
AOeomet,.ase,, ras=ctur,forCom,.tation Ana,ysis
Robert Haimes

Department of Aeronautics and Astronautics
Massachusetts Institute of Technology

haimes @orville.mit.edu

Introduction

The computational steps traditionally taken for most engineering analysis suites (computational

fluid dynamics -- CFD, structural analysis, heat transfer and etc.) are:

• Surface Generation -- usually by employing a CAD system

• Grid Generation -- preparing the volume for the simulation

• Flow Solver -- producing the results at the specified operational point

• Post-processing Visualization -- interactively attempting to understand the results

For structural analysis, integrated systems can be obtained from a number of commercial vendors.
These vendors couple directly to a number of CAD systems and are executed from within the CAD
GUI. It should be noted that the structural analysis problem is more tractable than CFD; there are

fewer mesh topologies used and the grids are not as fine (this problem space does not have the
length scaling issues of fluids).

For CFD, these steps have worked well in the past for simple steady-state simulations at the

expense of much user interaction. The data was transmitted between phases via files. In most
cases, the output from a CAD system could go to IGES or STEP files. The output from Grid
Generators and Solvers do not really have standards though there are a couple of file formats that
can be used for a subset of the gridding (i.e. PLOT3D data formats). The user would have to patch

up the data or translate from one format to another to move to the next step. Sometimes this could
take days. Specifically the problems with this procedure are:

File based. Information flows from one step to the next via data files with formats specified for

that procedure. File standards, when they exist, are wholly inadequate. For example, geometry
from CAD systems (transmitted via IGES files) is defined as disjoint surfaces and curves (as
well as masses of other information of no interest for the Grid Generator). This is particularly

onerous for modem CAD systems based on solid modeling. The part was a proper solid and in
the translation to IGES has lost this important characteristic. STEP is another standard for CAD
data that exists and supports the concept of a solid. The problem with STEP is that a solid
modeling geometry kernel is required to query and manipulate the data within this type of file.

'Good' Geometry. A bottleneck in getting results from a solver is the construction of proper
geometry to be fed to the grid generator. With 'good' geometry a grid can be constructed in
tens of minutes (even with a complex configuration) using unstructured techniques. Adroit
multi-block methods are not far behind. This means that a million node steady-state solution

can be computed on the order of hours (using current high performance computers) starting
from this 'good' geometry. Unfortunately, the geometry usually transmitted from the CAD
system is not 'good' in the grid generator sense. The grid generator needs smooth closed solid

geometry.It cantakeaweek(ormore)of interactionwith theCAD output(sometimesby
hand)beforetheprocesscanbegin.

One-wayComminucation.All informationtravelson fromonephasetothenext.Thismakes
procedureslike nodeadaptationdifficult whenattemptingto addor movenodesthatsit on
boundingsurfaces(whentheactualsurfacedatahasbeenlostafterthegrid generationphase).

Until thisprocesscanbeautomated,morecomplexproblemssuchasmulti-disciplinaryanalysisor
usingtheaboveprocedurefor designbecomesprohibitive.Thereis alsonoway to easilydealwith
thissystemin amodularmanner.Onecanonly replacethegridgenerator,for example,if the
softwarereadsandwritesthesamefiles.

Insteadof theserialapproachto analysisasdescribedabove,CAPRI takesa geometrycentric
approach.Thismakestheactualgeometry(notadiscretizedversion)accessibleto all phasesof the
analysis.Theconnection to the geometry is made through an Application Programming Interface
(API) and NOT a file system. This API isolates the top-level applications (grid generators, solvers
and visualization components) from the geometry engine. Also this allows the replacement of one
geometry kernel with another, without effecting these top-level applications. For example, if
UniGraphics is used as the CAD package then Parasolid (UG's own geometry engine) can be used
for all geometric queries so that no solid geometry information is lost in a translation. This is much
better than STEP because when the data is queried, the same software is executed as used in the
CAD system. Therefore, one analyzes the exact part that is in the CAD system.

CAPRI uses the same idea as the commercial structural analysis codes but does not specify
control. Software components of the CAD system are used, but the analysis suite, not the CAD
operator, specifies the control of the software session. This also means that the license issues (may
be) minimized and individuals need not have to know how to operate a CAD system in order to run
the suite.

The CAPRI API

CAPRI is a software building tool-kit that refers to two ideas; (1) A simplified hierarchical view
of a solid part integrating both geometry and topology definitions, and (2) Programming access to
this part and any attached data.

A complete definition of the geometry and application-programming interface can be found in the
attached document "CAPRI: Computational Analysis PRogramming Interface". In summary the
interface is sub-divided into the following functional components:

1. Utility routines -- These routines include the initialization of CAPRI, loading CAD parts and
querying the operational status as well as closing the system down.

2. Geometry database queries -- This group of functions allow all top-level applications to figure
out and get detailed information on any geometric component in the Volume definition.

3. Point queries -- These calls allow grid generators, or solvers doing node adaptation, to snap
points directly onto geometric entities.

4. Calculated or geometrically derived queries - These calls calculate data from the geometry to
aid in grid generation.

. Boundary data routines -- This part of CAPRI allows general data to be attached to
Boundaries so that the boundary conditions can be specified and stored within CAPRI's
database.

6. Tag based routines -- This part of the API allows the specification of properties associated with
either the Volume (material properties) or Boundary (surface properties) entities.

7. Geometry based interpolation routines -- This part of the API facilitates Multi-disciplinary
coupling and allows zooming through Boundary Attachments.

. Geometric modification -- This will be used for an automated design system where the goal of
the application is to change the geometry. Routines that allow this have the advantage that if the
data is kept consistent with the CAD package, then the design can be incorporated directly and
therefore is manufacturable.

Status of This Years Work

l°

.

o

°

Component 7 above, zooming and multi-disciplinary coupling has been and tested for

geometric interpolation. Though simple in concept (mapping data to and extracting interpolated
data from the actual geometry), the generalization is complex. To properly support
turbomachinery applications it was necessary to include the idea of"replication" and movement
of Volumes. This allows matching of the stator and rotor passages when the entire wheel is not
simulated. Common visualization techniques like "mirroring" become a simple form of

replication.

The use of CAPRI

Clearly for this work to be successful, it must be used. The easiest way to convince industry of
its value is to work on a topical problem of interest that current methods do not provide timely

results. Originally it was thought that a problem of interest to GE Aircraft Engines would be
tackled, but GE could not decide on a tasks of mutual interest. Instead the following projects

were completed with NASA Lewis personnel:

APNASA - John Adamchyk's Average Passage turbomachinery simulation code.
The grid generator (APG) of APNASA was converted to use CAPRI as the input for

geometry. This meshing system was a good test in that it has some very stringent requirements
(all resultant grid planes in the circumferencial direction must be on surfaces of revolution).
This exercise brought out the importance of CAPRI's provided tessellation and that is must be
defined in a more rigorous manner. This prompted a redefinition of the API associated with the
tessellation so that the surface triangles match at edges and all of the connectivity is supplied.
UniGraphics' parts were used in this exercise. But this change in the API required a major
effort for Pro/ENGINEER because the triangulation given from the CAD system was open. A
surface tessellation was therefore written that holds "water".

LAPIN - This 1-D nozzle code was used in a Pro/ENGINEER exercise. ProE was used to

sketch the nozzle's geometry. This was revolved to create a 3D solid part. CAPRI was used to
query the geometry and generate the input to LAPIN.

Native Geometry Kernel
In an attempt to provide a working version of CAPRI that does not require any licensed
software a simple kernel was ported. This geometry system is based on the FELISA suite by
Prof. Jaime Peraire at MIT. Having this geometry system also allows the investigation into

support of non-manifold objects and mixing geometry kernels.

SDRC's I-DEAS

By the end of this contract period a CAPRI port to the CAD system I-DEAS will be complete.
This requires licenses to Open I-DEAS and Orbix for the CORBA based communication.

Presentations

Seminars were given through out the year at Pratt & Whitney., GE Aircraft Engines and Stanford
University. The paper "Computational Analysis PRogramming Interface" was given at the 6 'h
International Conference on Numerical Grid Generation in Computational Field Simulations held at

the University of Greenwich. A copy has been attached.

Statement of Work

The effort for moving CAPRI forward within the next year follows many fronts. The following
list of tasks will be addressed:

° CATIA

The CAD package CATIA will be the next to be integrated into the CAPRI framework. The
proper licenses have been obtained to allow access to CATIA parts and the geometry kernel.
CATIA is the only other major CAD vendor used by the aerospace industry currently not
covered. This will allow Boeing access to CAPRI and therefore use and contribute to this
work.

. The NPARC Consortium's WIND code & CGNS

Efforts will be made this year to integrate CAPRI into the WIND code. WIND uses the data
file format CGNS for the storage of the CFD grids and results. It has been commercialized by
ICEM-CFD. This hierarchical format contains a placeholder for geometry but no mechanism to
operate on this information. The combination of this data file format and the geometry API
perfectly complement each other. It is the goal of this task to display this functionality so that
both CAPRI and CGNS can attain greater acceptance.

. Geometry Creation and Modification
Once CATIA has been ported, the entire issue of modification and creation of solid-based
geometry can be addressed. At a minimum, functions like scribing and splitting existing
surface are required for grid generation of structured blocks as well as being able to bound and
invert existing solids to create the fluid volume.

With the knowledge of the internals of four major CAD systems (and a native geometry
kernel), a group of functions can be specified so that these operations are feasible across these
CAD packages. The goal is to produce an API that is both conceptually simple and very
powerful. Boolean operations on solids may be the foundation for this part of CAPRI.

. Commercial Grid Generators

The turbomachinery industry is beginning to use commercial grid generators. This causes a
problem for CAPRI specifically and automated analysis and design systems in general. The
work here requires that the grid generator use the solid model during the meshing and update
the information in CAPRI with the surface discretization when complete. Wrappers can be
written to merge the operations but a more complete integration is desirable. Attempts will be
made to convince the vendors of these CFD grid generators to hook up to CAPRI (the
packages include ICEM-Hexa, ICEM-Tetra, GddGen and GridPro). The connection between
CGNS and CAPRI should help in the case of ICEM.

. Geometry Interface Standards and CORBA's OMG

A proposal has been initiated by NASA Lewis personnel to the PPE group within OMG to use
CAPRI as the basis for an analysis IDL. This will be supported in this task. A trip is planned
to a future meeting of the PPE group.

o Concurrent Support of Multiple Geometry Kernels
There have been some requests that a mixing of parts from various CAD systems (and the

native modeler) may be advantageous. This is not fundamentally difficult, but does require
some recasting of the code so that when all of the systems supported are not present,
applications can still be built. This may also allow the use of non-manifold objects (from within
the native system).

CAPRI: Computational Analysis PRogramming Interface

Revision 0.85

Robert Haimes

Massachusetts Institute of Technology

haimes@orville.mit.edu

September 3, 1998

A Solid Modeling Based Infra-structure for
Engineering Analysis and Design

Abstract

CAPRI is a CAD-vendor neutral application programming interface designed for the con-

struction of analysis suites and design systems. By allowing access to the geometry from

within all modules (grid generators, solvers and post-processors) such tasks as meshing on

the actual surfaces, node enrichment by solvers and defining which mesh faces are bound-

aries (for the solver and visualization system) become simpler. The overall reliance on file

'standards' is minimized.

This 'Geometry Centric' approach makes multi-physics (multi-disciplinary) analysis

codes much easier to build. By using the shared (coupled) surface as the foundation, CAPRI

provides a single call to interpolate grid-node based data from the surface discretization in

one volume to another. Finally, design systems are possible where the results can be brought

back into the CAD system (and therefore manufactured) because all geometry construction

and modification are performed using the CAD system's geometry kernel.

License

This software is being provided to you, the LICENSEE, by the Massachusetts Institute of

Technology (M.I.T.) under the following ficense. By obtaining, using and/or copying this

software, you agree that you have read, understood, and will comply with these terms and

conditions:

Permission to use, copy, modify and distribute, this software and its documentation for

any purpose and without fee or royalty is hereby granted, provided that you agree to comply

with the following copyright notice and statements, including the disclaimer, and that the

same appear on ALL copies of the software and documentation:

Copyright 1997-1998 by the Massachusetts Institute of Technology. All rights reserved.

THIS SOFTWARE IS PROVIDED "AS IS", AND M.I.T. MAKES NO REPRESEN-

TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT

NOT LIMITATION, M.I.T. MAKES NO REPRESENTATIONS OR WARRANTIES OF

MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT

THE USE OF THE LICENSED SOFTWARE OR DOCUMENTATION WILL NOT IN-

FRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER

RIGHTS.

The name of the Massachusetts Institute of Technology or M.I.T. may NOT be used

in advertising or publicity pertaining to distribution of the software. Title to copyright in

this software and any associated documentation shall at all times remain with M.I.T., and

USER agrees to preserve same.

2

Co e s

1 Introduction
7

2 CAPRI 10

2.1 Geometry and Topology 11

2.1.1 Solid Model Accuracy 13

14
2.2 Volumes

2.2.1 Replication 14

2.2.2 Displacement 14

2.2.3 Volume Tags 14

15
2.3 Boundaries

2.3.1 Boundary Discretization 16

2.3.2 Special Groupings 16

2.3.3 Boundary Attachments 17

2.3.4 Boundary Tags 17

2.4 Interpolation Handles 17

2.5 The CAPRI API 18

2.5.1 Main Program 21

2.5.2 Memory Usage 21

3 The Modules 23

23
3.1 Grid Generator

23
3.2 Solver

24
3.3 Visualization

4 The Geometry Viewer
25

5 Notes on Supported Systems 27

5.1 UniGraphics & ICAD - Parasolid 27

5.2 Pro/ENGINEER- Pro/TOOLKIT 28

A Utility Calls 30

A.1 Start - Initialize CAPRI 30

A.2 LoadPart - Load Volume(s) from CAD part file 30

A.3 SavePart - Save Volume(s) to CAD part file 30

A.4 NumVolumes - Returns the Number of Active Volumes 31

A.5 GetModeller - Returns the Geometry Kernel in use 31

A.6 DelVolume - Removes a Volume 31

A.7 Stop - Terminate CAPRI 31

B Geometry Data-Base Queries

B.1

B.2

B.3

B.4

B.5

B.6

B.7

B.8

B.9

B.10

B.11

32

GetNode - Returns the Data for a Node 32

GetEdge - Returns the Data for an Edge 32

GetFace - Returns the Data for a Face 32

GetBoundary - Returns the Data for a Boundary 33

NewBoundary - Creates a New Boundary for the Volume 34

MoveFace - Assigns a Face to a Boundary 34

NameVolume - Assign a Title to a Volume 34

GetVolume - Returns the Data for a Volume 35

Box - Return the Bounding Coordinates for the Volume 35

TesselEdge - Returns the tesselation of the Edge 36

TesselFace - Returns a connected tesselation of the Face 36

C Point Queries 38

C.1 PointOnEdge - Returns the Coordinates On the Edge 38

C.2 NearestOnEdge - Finds the Nearest Position to the Edge 38

C.3 PointOnFace - Returns the Coordinates On the Specified Face 39

C.4 NearestOnFace - Finds the Nearest Position to the Face 40

C.5 NormalToFace - Finds the Normal at the Specified Parameters 40

C.6 InEdge - Is the Point Contained in the Edge 41

C.7 InFace - Is the Point Contained on the Face 41

C.8 InBoundary - Is the Point Contained on the Boundary 41

C.9 InVolume - Is the Point Contained within the Volume 42

4

D Calculated or Geometrically Derived Queries 43

D.1 LengthOfEdge - Returns the arc-length of the Edge 43

D.2 CurvOfEdge - Gets the tangent and curvature for an Edge point 43

D.3 MaxCurvOfEdge - Gets the maximum curvature for the attached Faces . . 44

D.4 CurvOfFace - Gets the principal directions and curvature at a Face point 44

D.5 MaxCurvOfFace - Returns the maximum curvature of a Face point 45

D.60rderLoops - Returns a Faces loop order and orientation 45

E Boundary data routines

E.1

E.2

E.3

E.4

E.5

E.6

E.7

E.8

E.9

E.10

E.11

47

SetDiscret - Declares the Discretization for the Boundary 47

GetDiscret - Returns data about the Discretization for the Boundary . . . 50

GetCoord - Returns the Boundary Discretization Coordinates 51

GetTris - Returns the Disjoint Triangle Discretization 51

GetQuads - Returns the Disjoint Quadrangle Discretization 52

GetQMesh - Returns the Quad-Mesh Discretization 52

Get3DNode - Translates the Boundary node to 3D node number 53

SetSpecial - Specify/Update a Special Grouping 54

GetSpecial - Return the info for a Special Grouping 54

GetISpecial - Get a Special Grouping by Index 55

DelSpecial - Remove a Special Grouping 55

F Geometry Based Interpolation Routines 56

F.1 SetAttach - Specify/Update a Boundary Attachment 56

F.2 GetAttach - Get a Boundary Attachment 57

F.3 GetIAttach - Get a Boundary Attachment by Index 57

F.4 DelAttach - Remove a Boundary Attachment 58

F.5 GetDisplace - Gets the Volume's displacement matrix 58

F.6 SetDisplace - Set the Volume's displacement matrix 59

F.7 GetReplicate - Gets the Volume's replication data 59

F.8 SetReplicate - Set the Volume's replication data 60

F.9 NewHandle - Create new Interpolation Handle 60

G

F.10 GetHandle - Gets the Interpolation Handle data 61

F.11 DelHandle - Remove an Interpolation Handle 61

F.12 InterAttach - Interpolate to Produce/Update Boundary Attachment 62

Tag

G.1

G.2

G.3

G.4

G.5

G.6

G.7

G.8

Routines 63

GetNumVolume - Returns the number of Volume Tags 63

GetVolume - Gets the Volume Tag 63

GetIVolume - Gets the Volume Tag by index 63

SetVolume - Sets the Volume Tag 64

GetNumBoundary - Returns the number of Boundary Tags 64

GetBoundary - Returns the Boundary Tag 64

GetIBoundary - Gets the Boundary Tag by index 65

SetBoundary - Sets the Boundary Tag 65

H Return Codes 66

1 Introduction

The computational steps traditionally taken for Computational Fluid Dynamics (CFD),

Structural Analysis, and other simulation disciplines (or when these are used in design) are:

• Surface Generation

The surfaces of the object(s) are generated usually from a CAD system. This creates

the starting point for the analysis and is what is used for manufacturing.

• Grid Generation

These surfaces are used (with possibly a bounded outer domain) to create the vol-

ume of interest. Usually for the analysis of external aerodynamics, the aircraft is

surrounded by a domain that extends many body lengths away from the surfaces.

This enclosed volume is then discretized (subdivided) in one of many different ways.

Unstructured meshes are built by having the subdivisions usually comprised of tetra-

hedral elements. Another technique breaks up the domain into sub-domains that

are hexahedral. These sub-domains are further divided in a regular manner so that

individual cells in the block can be indexed via an integer triad.

• Flow Solver or Simulation

The solver takes as input the grid generated by the second step (and information about

how to apply conditions at the bounds of the domain). Because of the different styles

of gridding, the solver is usually written with ability to use only one of the volume

discretization methods. In fact there are no standard file types, so most solvers are

written in close cooperation with the grid generator. For fluids, the solver usually

simulates either the Euler or Navier-Stokes equations in an iterative manner, storing

the results either at the nodes in the mesh or in the element centers. The output of

the solver is a file that contains the solution.

• Post-processing Visualization

After the solution procedure has successfully completed, the output from the grid

generator and the simulation are displayed and examined in a graphical manner by

the fourth step in this process. Usually a workstation with a 3D graphics adapter is

used to quickly render the output from data extraction techniques. The tools (such as

iso-surfacing, geometric cuts and streamlines) allow the examination of the volumetric

data produced by the solver. Even for steady-state solutions, much time is usually

required to scan, poke and probe the data in order to understand the physics in the

flow field.

These steps have worked well in the past for simple steady-state simulations at the

expense of much user interaction. The data was transmitted between phases via files (the

7

IoAo Griddin Solvin -- Visualize
Figure 1: The Traditional Computational Analysis Suite

arrows in Figure 1). In most cases, the output from a CAD system could go to IGES files.

The output from Grid Generators and solvers do not really have standards though there are

a couple of file formats that can be used for a subset of the problem space (i.e. PLOT3D

data formats for CFD). The user would have to patch up the data or translate from one

format to another to move to the next step. Sometimes this could take days. Specifically,

the problems with this procedure are:

• File based

Information flows from one step to the next via data files with formats specified for

that procedure. Historically, this allows individuals or groups to work in isolation on

the construction of one of these components; unfortunately the user (or team) suffers

greatly because of the lack of integration. In many cases the files that get used do not

contain all the information required to couple all components so that the user can be

removed from the mechanics of running the suite.

• 'Good' Geometry

A bottleneck in getting results from a solver is the construction of proper geometry

to be fed to the grid generator. With 'good' geometry a grid can be constructed in

tens of minutes (even with a complex configuration) using unstructured techniques.

Adroit multi-block methods are not far behind. This means that a million node

CFD steady-state solution can be computed on the order of hours (using current high

performance computers) starting from this 'good' geometry. Unfortunately, geometry

from CAD systems (especially when transmitted via IGES files) is not 'good' in the

grid generator sense. The data is usually defined as disjoint and unconnected surfaces

and curves (as well as masses of other information of no interest for the mesh). The

grid generator needs smooth closed solid geometry. It can take a week (or more) of

interaction with the CAD output (sometimes by hand) before the process can begin.

This is particularly onerous if the CAD system is based on solid modeling. The

part was a proper solid with topology and in the translation to IGES has lost these

important characteristics.

• One-Way Comminucation

All information travels on from one phase to the next. This makes procedures like

nodeadaptationdifficultwhenattemptingto addor movenodesthat sit onbounding
surfaces(whentheactualsurfacedatahasbeenlostafterthe grid generationphase).
In fact, the informationpassedfromphaseto phaseisnot enrichedbut is filtered.

Until this processcanbeautomated,morecomplexproblemssuchasMulti-disciplinary
analysisor usingthe aboveprocedurefor designbecomesprohibitive. There is alsono
way to easilydealwith this systemin a modularmanner.Onecanonly replacethe grid
generator,for example,if thesoftwarereadsandwritesthe samefiles.

Procedureslike zooming,definedwithin the NumericalPropulsionSystemSimulation
(NPSS),aredifficult to acheivewhenthe surfacedefinitionfor the couplingbetweenthe
simulationsis lost.

9

2 CAPRI

Instead of the serial approach to analysis as described above, CAPRI uses a geometry

centric approach. This makes the actual geometry (not a discretized version) accessible to

all phases of the analysis. The connection to the geometry is made through an Application

Programming Interface (API) and NOT a file system. This API isolates the top level

applications (grid generators, solvers and visualization components) from the geometry

engine. Also this allows the replacement of one geometry kernel with another, without

effecting the top level applications. For example, if UniGraphics is used as the CAD package

then Parasolid (UG's geometry engine) can be used for all geometric queries so that no

solid geometry information is lost in a translation. If ProE is used then Pro/Toolkit is

accessed when geometric information is required. See Figure 2.

ICAD I

Geo.

Gridding Solving

API

Kernel Geo. DataBase

Figure 2: The CAPRI based Computational Analysis Suite

It is very important to consider the design goals when building a new software architec-

ture. Without properly setting a broad foundation, the system may not be able to function

as desired. The goals for CAPRI are:

Modular

The system must support a modular or building-block method for construction. This

facilitates a plug and play approach at the top level as well as the underlying geometry

kernel.

Multiple languages

It is important to support FORTRAN, C and C++. Many CFD codes are currently

written in FORTRAN. On many machines, the FORTRAN compiler produces more

highly optimized code, giving much better performance. Forcing the core of these

10

algorithmsto anotherlanguage,just becausetherestof thesystemis in that language,
is not bepart of the philosophyfoundin CAPRI.

Transientsolutions

This systemmustsupportunsteadysimulationsaswellassteady-state,whichinclude
the underlyinggeometrychangingwith time.

Allow Multi-disciplinecouplingandzooming
This systemmustbegeneralenoughto allowcouplingfromcodesof otherdisciplines
(includingbut not limited to - structural analysis,heattransfer,acousticcodes).In
fact the couplingcouldbeclose,in that theanalysiscodecouldbemadea part of the
overalldesignsystem.

2.1 Geometry and Topology

To insure that the design goals can be met and the resulting interface is not overly complex,

it is crucial that the geometry description be uncomplicated (but not too simple as to

impair functionality). Most systems that deal with CAD data make the distinction between

geometry (points, curves and surfaces) and topology (the hierarchical connections between

geometric entities). CAPRI mixes these in a simple geometry data definition.

The geometry and topology are defined in CAPRI in the following manner:

,, Nodes

These are the simplest entities and are just points in 3 space.

• Edges

Edges are curves. Each Edge is bounded by two unique Nodes. The Edge is param-

eterized with t, where the first Node has a value at train and the second bounding

Node has a value of tmax. The value of train is always less than traax.

To aid in plotting, there is an attached tesselation of the curve. This is defined as a

poly-line with a specified length. The line is defined starting at the first Node and

terminates with the second.

Note: Circles, ellipses and other closed loops found in the original CAD definition are

broken up by CAPRI so that there is no parameterization that is periodic. Any closed

loop will be broken in two and therefore may have two Nodes added so that the Edge

can be properly bounded.

• Faces

Faces are parameterized (u, v) surfaces. The parameter range for u is Umin to uraax

and v ranges from Vmin to vmax, but the relationship between (u, v) and the bounding

11

Edges is not as simple as the Edge-Node definitions. This is because Faces may be

bounded by more than 4 Edges. In fact, a Face can be a very complex surface where

the ranges of the parameterization are only limits and should not be used throughout

its entirety (i.e. there may be a hole or the result of some trimming).

The bounds of the Face are defined by closed set(s) of Edges. There may be one or

more of these loops for each Face. Stored with each defining Edge is an orientation so

that it is known whether to Iook at the Edge as specified or in the opposite sense. The

loop is an ordered suite that defines the orientation of the Face. The outer loop(s),

specify the boundary of the surface, and traverse the Face in a right-handed manner

- defining the outward pointing normal (out of the volume). Any holes are specified

by a left-handed traversal of Edges. See Figure 3.

Face

Node

Figure 3: A simple Volume with a cylinder cutout - Edges marked for front Face

Each Edge can be found bounding two Faces, one in the forward and one in the

opposite sense.

Again, to aid in plotting and to have a complete representation of this (possibly

complex) Face, there is an attached tesselation. This is defined as suite of disjoint

triangles of a specified length. Each triangle is right-handed with the normal pointing

out of the volume.

Note: Cylinders, and other periodic surfaces found in the original CAD definition

are broken up by CAPRI so that the parameterization is not periodic. Any periodic

surface will be broken in two and therefore may have two Edges added so that the

Face's parameter space is simple.

12

Boundaries
Boundariesaresimplycollections of one or more Faces. These entities are the connec-

tion between the geometry and the rest of the analysis suite, as described above. The

Faces need not couple together (i.e., a periodic boundary upstream and downstream

from a turbine or compressor blade) but are used to insure that the grid generation

knows that these surfaces could be treated in special ways. And, the solver knows

which boundary condition to apply to what section of the resultant mesh.

Boundaries have an associated name (i.e., far-field, body, wing and etc).

Volumes

Volumes are completely closed regions of 3 space. Volumes are bounded by the sum of

all of the Faces found in the Boundaries. These Faces match up at the shared Edges,

that terminate at the Nodes. CAPRI can handle one or more Volumes at a time.

Each Volume can be named with strings like; 'Fluids passage', 'Blade', and etc.

Volumes may have a number of associated Tags to indicate global conditions for the

discipline. Each Tag has an assigned value string. For example; the Volume 'Fluids

passage' may have the Tags 'gamma' (with the value string of '1.4') and 'smoothing'

(with the associated string '0.2 0.02').

The geometric entities described above are referenced within CAPRI with integer han-

dles or indices. Each Volume is assigned a handle when loaded. All entities contained within

that volume (Nodes, Edges, Faces and Boundaries) are given indices ranging from 1 to the

total number of entities in that class. Therefore, it usually requires 2 handles to describe

an entity, the volume and the entity indices.

There is a special Boundary index (zero) which refers to all currently unassigned Faces.

When a Volume (or number of Volumes) is first read from the CAD system, this Boundary

is fully populated with all Faces. As Faces become assigned, they are pulled from this

Boundary and put in the appropriate place.

2.1.1 Solid Model Accuracy

Face tesselations match at the Edge tesselations. This produces a complete triangulation

of the Volume that is manifold regardless of the underlying accuracy, surface matching and

closure. If the accuracy is lax, it is CAPRIs responsibility to provide a closed model.

This can have some implications when using either the Edge or Face tesselations. A

sense of the models accuracy can be gotten by taking the parameter value supplied for the

bounds of the entity and evaluating (calls to gi_qPointOnEdge or gi_qPointOnFace) to get

the coordinates. This needs to be compared to the values returned for the tesselation to

13

get the deviation(lackof accuracy)for theentity. Therefore,whenusingthis data nearor
at the bounds(for enriching)caremust be takensothat the Edgeor Facedata endsup
appearingsmooth.

2.2 Volumes

All coordinates for a Volume reported back through CAPRI are in the CADs native coor-

dinate system, scale and units for that individual component part.

2.2.1 Replication

There is a Replication matrix and count associated with each Volume. The count refers

to the number of times to apply the matrix to produce the complete representation of the

object. The matrix is a column-major matrix that is 4 columns by 3 rows. This matrix is

used to multiply all Volume coordinates in order to produce additional instances. This is

only referenced within CAPRI for the interpolation functions.

Mirroring can be considered a simple form of this type of replication, where the count

is one and the matrix is all zero except for the diagonal. The diagonal will contain 1.0 for

2 of the 3 components and -1.0 for the other.

2.2.2 Displacement

There is a Displacement matrix associated with each Volume. This matrix is also column-

major matrix that is 4 columns by 3 rows. The matrix is used to multiply all Volume

coordinates in order to specify movement of the Volume. This allows the support of any

combination of translation, scaling and rotation. This may be used for transient problems

where Volumes move by other Volumes. For the interpolation routines, Replication is

applied before Displacement.

During the loading of Volumes (from assemblies - collections of parts) the Displacement

matrix will properly be filled with the appropriate values so that the Volumes fit together

as seen within the CAD system.

2.2.3 Volume Tags

Tags are character strings associated with the Volume. Each Tag has an attached value

string. These Tag entities are useful for specifying conditions or material information for

the entire Volume. For example; the Volume may have a Tag 'gamma' with the associated

value '1.4'.

14

2.3 Boundaries

Boundaries are the pivotal data objects used within CAPRI. Boundaries are the entities

that the grid generators should build the exposed parts of the mesh about. Different solver

functions (boundary conditions) are then applied across these facets of the volume. When

Multi-disciplinary analysis are run, boundaries are where these different physical models

share information to drive the coupled solution.

The data that comes from CAD systems does not always provide a proper separation

of surfaces (Edges, as specified above) that coincide with what is required by the analysis

suite. This is for two reasons; (1) the CAD operator, by the order of construction, may

produce artifacts (such as sliver surfaces) or detail at a level more complex than the analysis

suite requires. (2) Curved surfaces such as fillets have breaks, on where these surfaces mate

with other surfaces, usually not at the center of curvature where the analysis suite would

require the edge of the boundary.

The first of these problems is resolved in CAPRI by allowing the collection of CAD

surfaces. The analysis suite can query this collection and get to the detailed CAD surfaces

if required. This has the advantage over what is done in automated techniques used for

grid generation in that the CAD artifacts can be meshed through as opposed to becoming

features in the grid. For example, a sliver surface would end up completely resolved, in an

automated surface gridding procedure, requiring potentially large numbers of small cells in

those regions.

Scribing and splitting CAD surfaces so that the analysis boundaries can be defined is

a function of CAPRI. Initially this is done interactively or through program control (if the

analysis suite can determine where to break the surfaces). In the future, work will be done

to attempt to automate this procedure.

Interactive functions are also provided within the CAPRI framework to collect these

CAD surfaces and produce the boundaries as well as setting up the information to run the

entire suite.

15

2.3.1 Boundary Discretization

Each Boundary can have an attached discretization. This discretization can be from dif-

ferent mesh topologies that touch the Boundary. There are 3 types of cell faces that build

this structure:

. Disjoint Triangles - 3 bnodes per entity

• Disjoint Quadrangles - 4 bnodes per entity

• Quad-Meshes - these are produced from grid 'planes' of structured blocks

These entities are supported via Boundary nodes (bnodes). The bnode numbering used is

local within the Boundary. For Disjoint Quads, the bnodes must be defined as it goes around

the quad in a right-handed manner pointing out of the volume. The node numbering scheme

used differentiates between the nodes in the non-block regions (formed by the disjoint faces)

and the structured blocks. Figure 4 shows a schematic of the bnode space, ndnode is the

number of nodes for the non-block (disjoint primitive) grid. Each Quad-Mesh (m) adds

NIm * NJm * NKm nodes to the node space (where NI, NJ and NK are the number of

nodes in each direction). The node numbering within the block follows the memory storage,

that is, (i,j,k) in FORTRAN and [k]_][i] in C. The bnode number = base + i + (j - 1) •

Win + (k - 1) • gin * YJrn.

Notes:

1) All indices start at 1.

2) Either NI, NJ or NK must be 1 for each Quad-Mesh.

3) Disjoint Tri and Quad definitions may contain nodes defined within the Quad-Meshes.

Quad-Meshes

1 ndnode nbnode

Figure 4: Boundary Node Space

2.3.2 Special Groupings

Special groupings are simply lists of bnodes that may be required by the solver's boundary

condition routines. This is to flag "special" nodes. For example, if IBlanking is used,

16

therecouldbea list that containsthe IBlanked nodes. If nodes along the Edges between

Boundaries need to be treated differently from those interior nodes, then these edge nodes

can be placed in a Special group.

2.3.3 Boundary Attachments

Boundary attachments are collections of data that axe associated with the bnodes of the

Boundary discretization. The attachments are identified by a name and can have an addi-

tional string that can indicate information on how and/or when the attachment was created.

These attachments can be used to communicate boundary level data between modules (i.e.,

heat transfer to the visualization module), perform Zooming or otherwise couple like simu-

lations at boundaries and perform multi-disciplinary coupling between Volumes.

2.3.4 Boundary Tags

Tags are character strings associated with the Boundary. Each string has an attached value

string. These Tag entities are useful for specifying conditions or material information for

the application of boundary conditions by the solver. For example; the Boundary named

'Wall' may have a Tag 'temperature' with the associated value '300K'.

2.4 Interpolation Handles

An integer hook is used in CAPRI to simplify the specification of Boundary to Boundary

interpolation required by single and multi-disciplinary coupling. This Handle is an index to

internal storage that contains information such as the indices and weights used in the source

Boundary node-space to create Attachments to the destination Boundary discretization.

Therefore each Handle is associated with four CAPRI indices. These indices are the Volume

and Boundary indices for the source and the destination Volume and Boundary indices.

When a new Handle is created the current state of the Displacement and Replication

data for the destination Volume is used as well as the Displacement matrix for the source

when calculating the interpolation. Therefore, for transient simulations, the Handles as-

sociated with Volumes moving (with respect to the coupled volume) must be deleted and

recreated every iteration.

All Volume data in CAPRI, when created or modified, is written out to files when the

Volume (part) is saved. Because the data pointed to by the Handle is potentially cross

Volume, this data is not written and must be recomputed when another CAPRI session is

started.

17

2.5 The CAPRI API

The CAPRI API is sub-divided into the following components:

1. Utility routines

These routines include initialization of CAPRI, loading CAD parts and querying sta-

tus as well as closing the system down:

• gi_uStart - Initialize CAPRI

• gi_uLoadPart - Loads a Volume or number of Volumes from a CAD part

• gi_uSavePart - Save away the CAD part

• gi_uNumVolumes - Returns the number of active Volumes

• gi_uGetModeller - Returns the Geometry Kernel in use

• gi_uDelVolume - Removes a Volume from CAPRI

• gi_uStop- Terminates CAPRI

2. Geometry data-base queries

This allows all top level applications to figure out and get detailed information on any

geometric component in the Volume definition:

• gi_dGetNode - Returns the data for a Node

• gi_dGetEdge - Returns the data for an Edge

• gi_dGetFace - Returns the data for a Face

• gi_dGetBoundary - Returns the data for a Boundary

• gi_dNewBoundary - Creates a new Boundary for the Volume

• gi_dMoveFace - Moves a Face from one Boundary to another

• gi_dNameVolume - Assigns a string to a Volume

• gi_dGetVolume - Returns the name of the Volume and the number of Nodes,

Edges, Faces and Boundaries attached

• gi_dBox - Returns the min and max coordinates for the Volume

• gi_dTesselEdge - Returne the tesselation of an Edge

• gi_dTesselFace - Returne the tesselation of a Face

18

3. Point queries

These calls allow grid generators, or solvers doing node adaptation, to snap points

directly on geometric entities:

• gi_qPointOnEdge - Returns the point at the t parameter and optionally derivi-

tives

• gi_qNearestOnEdge - Returns the t parameter given a point

• gi_qPointOnFace - Returns the point at the (u, v) parameters and optionally

derivitives

• gi_qNearestOnFace - Returns the (u, v) parameters given a point

• gi_qNormalToFace - Returns the normal to the given (u, v) parameters

• gi_qInEdge - Returns whether the given point is on the Edge.

• gi_qInFace - Returns whether the given point is in the Face or not (in some hole

or trimmed-off region)

• gi_dInBoundary - Returns whether the given point is in the Boundary and asso-

ciated Face index if it is.

• gi_qInVolume - Returns whether the given point is contained within the specified

Volume

4. Calculated or geometrically derived queries

These calls calculate data from the geometry to aid in grid generation:

• gi_cLengthOfEdge - Returns the arc-length of the Edge

• gi_cCurvOfEdge - Returns the curvature at a point on the Edge

• gi_cMaxCurvOfEdge - Returns the maximum Face curvature of a point on the

Edge

• gi_cCurvOfFace - Returns the curvatures and principal directions at a point on

the Face

• gi_cMaxCurvOfFace - Returns the maximum curature of a point on the Face

• gi_cOrderLoops - Returns a Faces loop order and orientation

19

5. Boundarydataroutines
This.part of CAPRI allowsgeneraldata to be attachedto Boundariesso that the

boundaryconditionscanbe specifiedandstoredwithin CAPRIsdata-base:

• gi_bSetDiscret- Setsthediscretizationfor the Boundary

• gi_bGetDiscret- Returnsthediscretizationfor the Boundary

• gi_bGetCoord- Returnsthediscretizationcoordinates

• gi_bGetTris- Returnsthe disjoint trianglediscretization

• gi_bGetQuads- Returnsthe disjointquaddiscreti_ation

• gi_bGetQMesh- Returnsthequad-meshdiscretization

• gi_bGet3DNode- Translateboundarynodeindexto 3D meshnode

• gi_bSetSpecial- Set/Updatea Specialgrouping

• gi_bGetSpecial- Returndataabouta Specialgrouping

• gi_bGetISpecial- Returndataabouta Specialgrouping(by index)

• gi_bDelSpecial- Removesa Specialgrouping

6. Geometrybasedinterpolationroutines
Thispart oftheAPI facilitatesMulti-disciplinarycouplingandallowszoomingthrough
BoundaryAttachments:

• gi_iSetAttach- Set/Updatea BoundaryAttachment

• gi_iGetAttach- Returndataabouta BoundaryAttachment

• giAGetIAttach- Returndataabouta BoundaryAttachment(by index)

• gi_iDelAttach- Removesa BoundaryAttachment

• giJGetDisplace- ReturnsVolumedisplacementmatrix usedfor interpolation

• giiSetDisplace- SpecifiesVolumedisplacementmatrix

• gi_iGetReplicate- ReturnsVolumereplicationusedfor interpolation

• giiSetReplicate- SpecifiesVolumereplicationfor interpolation

• gi_iNewHandle- Creates a new interpolation Handle

• gi_iGetHandle - Returns data about an interpolation Handle

• giADelHandle - Removes a Handle

• glAInterAttach - Interpolate to produce/update Boundary Attachment

2O

7. Tagbasedroutines

This part of the API allows the specification of properties associated with either the

Volume or Boundary entities:

• gi_tGetNumVolume - Returns the number of Volume Tags

• gi_tGetVolume - Return associated string for the specified Tag

• gi_tGetIVolume - Return data for the specified Tag (by index)

• gi_tSetVolume - Set/Update a Tag

• gi_tGetNumBoundary - Returns the number of Boundary Tags

• gi_tGetBoundary - Return associated string for the specified Tag

• gi_tGetIBoundary - Return data for the specified Tag (by index)

• gi_tSetBoundary - Set/Update a Tag

8. Geometric modification

This will be used for an automated design system where the goal of the application

is to change the geometry. Routines that allow this have the advantage that if the

data is kept consistent with the CAD package, then the design can be incorporated

directly and therefore is manufacturable.

Not yet defined!

2.5.1 Main Program

Some CAD programming interfaces require that the CAD system start and that the mod-

ification or enhancements be performed as call-backs. This means that a CAPRI module

may not actually be the Main Program. For C++ this may be a problem and can only be

resolved by following the CAD system's recommendations. For C programming, CAPRI's

include file defines CAPRI_MAIN in an appropriate manner and this can be used as the

main declaration including the argument list.

In FORTRAN and FORTRAN/90 there is no main program (in fact for all UNIX

FORTRANs a MAIN PROGRAM is actually a special subroutine). The top-level CAPRI

execution starts in a subroutine called MAIN_CAPRI that has no arguments.

2.5.2 Memory Usage

The CAPRI API returns pointers to memory in many calls when using either C or C++

as the programming language. These are usually pointers to the internal CAPRI data and

should NOT be freed. Also, the data contained within these memory blocks should only

be read and never modified.

21

If the data is constructed and then returned for the programmer, then the description

of the routine will specify that the pointer returned is freeable and should be freed by

the programmer when the data is no longer required. The programmer may, in this case,

change or modify the contents of the memory block(s).

Using FORTRAN/FORTRAN-90 with CAPRI functions that return data always fill the

calling routines arrays. In this case the size of the array must be placed in the parameter

that will return the final length. This insures that the arrays will not be over-run. If the

size is insufficient to hold the data, then an error indication is set. The function may be

recalled with larger arrays to get the complete information.

Character strings in FORTRAN/FORTRAN-90 are potentially truncated if the returned

text information is longer than the variable. No error is set.

22

3 The Modules

CAPRI does not specify either the use or control of the suite. The design system or analysis

software can be different programs controlled at some higher level (such as command line

language scripts or another code). The software could also be built as a single integrated

application. For example, an automated optimizer could be used to drive the entire suite,

and in this case, it would obviously be in control. Software control could also be specified

by some visually based GUI that allows plugging the modules together as envisioned by

NPSS.

For this to work, and for general plug and play, there needs to be agreement on how input

parameters get passed through the system(s). Within CAPRI, the Tag and Attachment

concepts are used for specifying this data. Tags place simple (or integrated quantities)

associated with the Volume or Boundary of interest into CAPRI so that other modules

have direct access. Complex specification of input can be achieved by mapping quantities

to Boundaries via Attachments. For modules to fit together agreement is required for the

naming of these entities.

It is the responsibility of the controlling software to fill the required Tags and/or At-

tachments for the target module (or cause them to be filled by executing some other module

in the system) before initiating execution.

3.1 Grid Generator

The Grid Generator task is the most straight forward. It uses CAPRI to query the geometry

and topology of the part of interest and then performs the meshing. Once complete, it spec-

ifies the Boundary discretization for the Volume so that the other modules can communicate

their data on the Boundary.

3.2 Solver

The simulation software gets the input data from CAPRI via Tags and Attachments but

will need to read the cloud of data (both mesh point locations and solution) from outside

of CAPRI. At the end of each cycle, and/or at the end of the simulation, Attachments and

integrated values (as Tags) are created or updated by calls to CAPRI. This data is the

information required by other modules in the system.

23

3.3 Visualization

The visualization software need not query the user for the surfaces of interest. These are the

Boundaries of the Volume(s). The list of Attachments can be scanned for each Boundary

and then these quantities (scalar, vector and/or state-vector) may be mapped and rendered

on the surfaces without the graphics software needing to know how to produce these values.

In this way the Viz software can be used to view and debug the coupling between simulations

(either multi-discipline or within a single discipline).

24

4 The Geometry Viewer

The Geometry Viewer is not an integral part of the API, but is a stand-alone tool-kit

that augments CAPRI. It can be thought of as another module in the software suite. The

Geometry Viewer is designed to be able to either become the visual interface and/or a

debugging aide for CAPRI.

The Geometry Viewer has been written to be modular and attachable to applications

that deal with data which normally come from either CAD systems and/or grid generators.

Unlike CAPRI, the language interfaces are only C and C++. This is due to the complex

data structures that need to be exposed to the programmer.

The Geometry Viewer has a hierarchical definition of the data to be represented on the

screen. At the lowest level are the Objects like; points, lines, surface facets and volume cell

data. Objects of similar type can be collected as a Graphic. The plotting of Graphics can

be controlled by a attribute that can be interactively or programatically adjusted. Graphics

can also be picked. The highest level definition is a Family. A Family of Graphics can be of

mixed Object type and the attributes can be controlled interactively in a ganged manner.

The Viewer has two execution modes; (1) normal, serial, execution where program

control is passed to the graphics, the data is examined and then when the user is satisfied,

execution resumes in the calling program. (2) Multi-threaded, where the data is shared

between to executing threads (application and graphics) and both can be concurrently

active allowing viewing as the application runs. This is particularly useful in the debugging

of grid generators.

The user interface is multi-windowed and has the same look and feel as Visual3 appli-

cations and the pV3 Server and Viewer. Because the Geometry Viewer was not designed as

a scientific visualization system, there is only the ability to deal with grids and geometry.

More effort has been put towards lighting models and the ability to light either faceted (nor-

mals based on cell faces) as well as smoothly (normals based on nodes). The 2D window is

only used for a planar cutting surface so that the interior of volumes may be examined.

The Geometry Viewer has the following features:

OpenGL

All 3D and 2D rendering is performed in OpenGL to achive high performance and

good animation.

3D Viewing

Items may be rendered in a specified color or colored via scalars that are either

defined at nodes or facets. The line and surface primitives (Objects) may be either

25

indexed(basedon a list of points) or non-indexed.The followingattributesmaybe
interactivelyadjustedfor Graphics:

- Points:Renderingon/off

- Lines:Renderingon/transparent/off,Movedforward(notobscuredbysurfaces),
Orientation(direction)on/off

- Surfaces:Renderingon/transparent/off,Lighting faceted/smooth,Orientation
(front vs. back)on/off, Meshon/movedforward/off.

• 2DViewing
Theintersectionof the planeandlinesareplottedaspointsin the2Dwindow. Inter-
sectedsurfacesaredisplayedascurves.Any 3Dmeshthat is cut is displayedasthe
intersectedcellfaces(lines)within the volume.

• PickingandLocating.Picking(pointingat andselectingobjects)in the3Dwindowis
supported.This isusefulin CAPRIfor specifyingtheBoundaryentitiesinteractively.

Locating (3D pointing and retrieving3 spacecoordinates)is usefulfor interactive
modificationof geometry.

• Data-baseThis windowis dedicatedto the Graphicswithin the GeometryViewer.
This is werethe interactivecontrolof the plotting attributesis performed.Graphics
not in Families(orphans)arelistedonseparatelines.Familiesarelistedbynameand
maybeopenedto lookat andadjustthe attributesof individualmembers.A Family
canbecreatedin this window.Also,movinganorphanGraphic(or a Graphicsin a
Family)to a Familyis donehere.

26

5 Notes on Supported Systems

5.1 UniGraphics & ICAD - Parasolid

• Modes of Execution

- Normal Mode

This mode carries all of the used parts of the Parasolid library as a portion of the

executable. This has the advantage that start-up is simpler, but the enormous

disatvantage that any executable is HUGE.

- Shared Library Mode

Shared Library Mode produces modules that are small but requires that the

shared library be accessable at run time.

• License Requirements

A Parasolid development license is required to build CAPRI applications. A Para-

solid run-time license is required to execute the module(s). Any UniGraphics or

ICAD seat has a run-time Parasolid license.

• Environment Variables

- PARASOLID

This environment variable must be assigned to the character string that specifies

the path required to find the Parasoild distribution.

- P_SCHEMA

This environment variable must point to the location that contains the Parasoild

schema files. Usually this is assigned like:

"setenv P_SCHEMA $PARASOLID/schema'.

- LDLIBRARY_PATH

This is a system level environment that must be used in Shared Library Mode.

It points to the location of the shared library in the Parasoild distribution.

Usually this is assigned like:

"setenv LDLIBRARY_PATH $PARASOLID/shared_object"

as long as other shared libraries are not currently specified.

27

5.2 Pro/ENGINEER- Pro/TOOLKIT

• Modes of Execution

- Simple Asynchronous Mode

It is advised to use this mode when debugging a CAPRI application. When a

CAPRI module (build for this mode) is started, it invokes ProE in the back-

gound and communicates via sockets. This has the advantage that the CAPRI

application is separate from ProE and therefore has it's own main program and

address space. The disadvantage is that the overhead in the socket communica-

tion can be overwhelming if many geometry queries are required.

- Spawn (multi-process) Mode

In this mode the CAPRI module becomes a secondary thread of ProE. In this

case communication is performed via shared memory and is much faster than

Simple Asynchronous Mode. A problem in debugging is that the debugger sees

the address space of both the CAPRI application and ProE.

The CAPRI thread is initiated by ProE, therefore the main program is ProE.

The module's main should be compiled with the -DNO_MAIN flag so that the

proper name is used to start the thread.

- DLL Mode

This is the mode that gives the best performance. The CAPRI application

becomes an integral part of ProE. Again, like Spawn Mode, the module's main

should be compiled with the -DNO_MAIN flag so that the proper name is used

to connect to ProE.

For either Spawn or DLL Modes special care must be taken when starting up ProE.

CAPRI modules run during ProE startup and can terminate before the CAD system

fully becomes operational. If no ProE windows are desired the command line argu-

ment "-g:no_graphics" must be used. Command line agruments to be passed on to

CAPRI modules should be prefaced by a "+", to differentiate them from the ProE

arguments. Also the file protk.dat is required in the current directory when ProE is

invoked.

License Requirements

A license for Pro/TOOLKIT is required to do development. Once the CAPRI appli-

cation is finished, the module(s) may be unlocked so that they can be distributed and

used without the Pro/TOOLKIT license. See the Pro/TOOLKIT User's Guide for

the instructions on unlocking an application.

Each CAPRI application will consume one ProE license.

28

• EnvironmentVariables& otherFiles

- PRO_COMMAND- EnvironmentVariable
This variableis used in Simple Asynchronous Mode so that it is known how to

start-up ProE. The string used to execute ProE at a prompt should be assigned

to this varaible.

- PRO_COMM_MSG_EXE - Environment Variable

This variable is also used only in Simple Asynchronous Mode. This tells the

CAPRI system where to find the ProE module used to perform the socket based

communication. The path of this file must be assigned to this variable, for

example:

"setenv PRO_COMM..MSG_.EXE/usr/ProE/sgi_elf2/obj/pro_comm-msg'.

- The Registry File - protk.dat

This file must be in the current directory when ProE is invoked for either Spawn

or DLL Modes. This tells ProE where and how to initiate the CAPRI ap-

plication. The CAPRI distribution has some examples of this file. See the

Pro/TOOLKIT User's Guide for a complete description of the options in the

Registry File.

29

A Utility Calls

A.1 Start - Initialize CAPRI

icode = gi_uStart 0

ICODE = IG_USTART()

This must be the first call to CAPRI. It initializes the system.

I: icode Return code

A.2 LoadPart - Load Volume(s) from CAD part file

icode = gi_uLoadPart(char *name)

ICODE = IG_ULOADPART(NAME)

Before examining any CAD data a "solids" part must be loaded. This routine can load

either a part or assembly from the CAD system. Therefore the result may be adding one

or more Volumes to CAPRI.

C: name Character string containing the file-name for the CAD

data

I: icode Return code

A.3 SavePart - Save Volume(s) to CAD part file

icode = gi_uSavePart(int vol, char *name)

ICODE = IG_USAVEPART(VOL, NAME)

This call allows the output of the part or assembly once data has been modified. Saving a

Volume that is part of a assembly saves the entire assembly.

I: vol

C: name

I: icode

Volume index

Character string containing the file-name for the part -

should be a different name than used to read the part

Return code

3O

A.4 NumVolumes - Returns the Number of Active Volumes

numVl = gi_uNumVolumes()

NUMVL = IG_UNUMVOLUMES()

Any negative return is the indicatiSn of an error.

I: numV1 Number of Volumes/Return code

A.5 GetModeller - Returns the Geometry Kernel in use

icode -- gi_uGetModeler(int vol, char **modeller)

ICODE -- IG_UGETMODELLER(VOL, MODELLER)

This routine returns the string associated the CAD Kernel.

I: vol Volume index

C: modeller The geometry kernel string - currently either:

Parasolid

Pro/ENGINEER

I: icode Return code

Note: At this point CAPRI can not mix Geometry Kernels in a single application.

A.6 DelVolume - Removes a Volume

icode = gi_uDelVolume(int vol)

ICODE = IG_UDELVOLUME(VOL)

This call deletes an active Volume from CAPRI and frees up all associated memory.

I: vol Volume index

A.7 Stop - Terminate CAPRI

icode -- gi_uStop(int exit)

ICODE = IG_USTOP(exit)

This must be the last call to CAPRI. It terminates the system and frees up all memory.

CAPRI will need to be re-initialized before using any functions.

I: exit 0 - return; otherwise exit in the appropriate manner.

I: icode Return code

31

B Geometry Data-Base Queries

B.1 GetNode - Returns the Data for a Node

icode -- gi_dGetNode(int vol, node, dou01e *point)

ICODE -- IG_DGETNODE(VOL, NODE, POINT)

Returns the 3D coordinates associated with the Node.

I: vol Volume index

I: node Node index

D: point Point - length 3 (returned)

I: icode Return code

B.2 GetEdge - Returns the Data for an Edge

icode = gi_dGetEdge(int vol, edge, double *trange, int *nodes)

ICODE = IG_DGETEDGE(VOL, EDGE, TRANGE, NODES)

Returns the data associated with the Edge.

I
I: vol

I: edge

D: trange

I: nodes

I: icode

Volume index

Edge index

train and tmax - length 2 (returned)

Node endpoint indices - length 2 (returned)

Return code

B.3 GetFace - Returns the Data for a Face

icode ---- gi_dGetFace(int vol, face, double *urange, int *nloop,

**loops, **edges)

ICODE -- IG_DGETFACE(VOL, FACE, URANGE, NLOOP, LOOPS,

EDGES)

Returns the data that defines the Face.

I
I: vol

I: face

D: urange

Volume index

Face index

Umin, vrain, uraax and Vmax - length 4 (returned)

32

I: nloop

I: loops

I: edges

I: icode

Number of Edge loops (returned)

pointer to Edge loop lengths - nloop in total (returned)

pointer to Edge pairs that make up all of the loops (re-

turned)

Each entry contains 2 integers, first the Edge index and

second the sense (-1 or 1) - data length is the sum of all

loop lengths

Return code

FORTRAN note: The pointers is not returned. NLOOP must be set with the length

of LOOPS and LOOPS(l) must be set with the size of EDGES (2 INTEGERS per) before

the call is executed. LOOPS and EDGES are filled with the actual data and NLOOP is set

with the number of loops for the Face. If either of the declared lengths are not long enough

to store the data, then the return code CAPRI_OVERFLOW is set. Information is filled

up to that limit.

B.4 GetBoundary - Returns the Data for a Boundary

icode ---- gi_dGetBoundary(int vol, bound, *nface, **faces, char **name)

ICODE = IG_DGETBOUNDARY(VOL, BOUND, NFACE, FACES, NAME)

Returns the data associated with the Boundary.

I: vol

I: bound

I: nface

I: faces

C: name

I: icode

Volume index

Boundary index (0 - "UnAssigned")

Number of faces (returned)

pointer to the face indices (returned)

pointer to character string (returned)

Return code

FORTRAN note: The pointer is not returned. NFACES must be set with the size of

FACES at the call. It is returned with the actual length. If FACES is not declared large

enough (by the calling routine) the return code CAPRI_OVERFLOW is set but all the data

up to that length is correct.

33

B.5 NewBoundary - Creates a New Boundary for the Volume

icode = gi_dNewBoundary(int vol, char *name)

ICODE -- IG_DNEWBOUNDARY(VOL, NAME)

Creates the new Boundary for the volume with the given name.

I: vol

C: name

I: icode

Volume index

character string for the name of the Boundary

Created Boundary index/Return code

B.6 MoveFace - Assigns a Face to a Boundary

icode -- gi_dMoveFace(int vol, face, bound)

ICODE ---- IG_DMOVEFACE(VOL, FACE, BOUND)

Moves the Face from one Boundary to the assigned Boundary index. Note: All current

discretizations, groupings, attachments and handles are removed from both source and

destination Boundaries.

I: vol Volume index

I: face Face index

I: bound Boundary index - target

I: icode Return code

B.7 NameVolume - Assign a Title to a Volume

icode -- gi_dNameVolume(int vol, char *name)

ICODE ---- IG_.DNAMEVOLUME(VOL, NAME)

Gives the Volume a name.

I: vol

C: name

I: icode

Volume index

character string assigned to the volume

Return code

34

B.8 GetVolume - Returns the Data for a Volume i

icode -- gi_dGetVolume(int vol, *nnode, *nedge, *nface, *nbound,

char **name)

ICODE = IG_DGETVOLUME(VOL, NNODE, NEDGE, NFACE, NBOUND,

NAME)

Returns the number of entities associated with the Volume index.

I: vol

I: nnode

I: nedge

I: nface

I: nbound

C: name

I: icode

Volume index

number of Nodes associated with the volume (returned)

number of Edges associated with the volume (returned)

number of Faces associated with the volume (returned)

number of Boundaries found within the volume (returned)

pointer to the string for the Volume's name (returned)

Return code

B.9 Box - Return the Bounding Coordinates for the Volume

icode = gi_dBox(int vol, double *box)

ICODE = IG_DBOX(VOL, BOX)

Returns the coordinate box that contains the Volume.

I: vol

D: box

I: icode

Volume index

Xrnin, Ymin, Zmin, Xrnaz, Ymax and Zmaz - length 6 (re-

turned)

Return code

35

B.10 TesselEdge - Returns the tesselation of the Edge

icode -- gi_dTesselEdge(int vol, edge, *npt, double **pt, **t)

ICODE -- IG_CTESSELEDGE(VOL, EDGE, NPT, PT, T)

Computes and returns an indexed tesselation of the Edge with the associated parameters

for each point.

I: vol

I: edge

I: npt

D: pt

D: t

I: icode

Volume index

The Edge index

The number of points that support the tesselation (re-

turned)

A pointer to the points (returned)

Each point requires 3 doubles (X, Y and Z) and therefore

the length of pt is atleast 3*npt.

A pointer to the parameters (returned)

Return code

FORTRAN note: The pointers are not returned. NPT must be set with the size of PT

(3 DOUBLE PRECISION words per) and T (a DOUBLE PRECISION word per point)

before the call. NPT is returned with the actual lengths used. If the length is not large

enough, then the return code CAPRI_OVERFLOW is set but all the data up to the declared

length is correct.

B.11 TesselFace - Returns a connected tesselation of the Face

icode -- gi_dTesselFace(int vol, face, *ntri, **tris, **tric, *npt,

double **pt, int **ptype, **pindex, double **uv)

ICODE -- IG_DTESSELFACE(VOL, FACE, NTRI, TRIS, TRIC,

NPT, PT, PTYPE, PINDEX, UV)

Returns the connected indexed tesselation of the Face. Data is also supplied so that match-

ing may be done along Edges that bound the Face.

I: vol

I: face

I: ntri

I: tris

Volume index

Face index

The number of triangles (returned)

A pointer to the indexed triangle definitions (returned).

Each triangle is defined by 3 indices (bias 1) into the mem-

ory pointed to by pt.

36

I: tric

I: npt

D: pt

I: ptype

I: pindex

D: uv

I: icode

A pointer to the triangleconnections (returned).

Each triangle has 3 connections as indices to tris (bias 1).

Each indicates the triangle neighbor of the opposing side

(of the triangle node). A negative value indicates that the

side is in an Edge. The absolute value is the Edge index.

The number of points that support the tesselation (re-

turned)

A pointer to the points (returned).

Each point requires 3 doubles (X, Y and Z) and therefore

the length of pt is atleast 3*npt.

A pointer to a marker that specifies the type of point (re-

turned).

-1 indicates an interior point, 0 flags a Node and any pos-

itive value points to an Edge point (where the value is the

index [bias 1] into the Edge tesselation that matches)

A pointer that holds the indices for the type (returned).

-1 flags an interior point. If ptype for the point is 0 the

pindex value is the Node index, if ptype is positive then

this holds the Edge index.

A pointer to the parameters associated with the points

(returned).

Each point requires 2 doubles (U and V) and therefore the

length of uv is 2*npt.

Return code

FORTRAN note: The pointers are not returned. NTRI must be set with the size

of TRIS (3 INTEGERS per triangle) and TRIC (3 INTEGERS per triangle) at the call,

NPT must be set with the size of PT (3 DOUBLE PRECISION words per), PTYPE (one

INTEGER per), PINDEX (one INTEGER per), and UV (2 DOUBLE PRECISION words

per point). NTRI and NPT are returned with the actual lengths used. If the length is not

large enough, then the return code CAPRI_OVERFLOW is set but all the data up to the

declared length is correct.

37

C Point Queries

c.1 PointOnEdge - Returns the Coordinates On the Edge

icode ---- gi_qPointOnEdge(int vol, edge, double t, *point, int der,

double *dl, *d2))

ICODE = IG_QPOINTONEDGE(VOL, EDGE, T, POINT, DER, D1, D2)

Returns the Point and derivitives (optionally) at the t parameter.

I: vol Volume index

I: edge Edge index

D: t t parameter

D: point Point - length 3 (returned)

I: der Derivative Flag:

0 - No derivatives (only return point)

1 - Compute and return first derivative

2 o Compute and return first and second derivatives

D: dl First derivative - length 3 (returned, der > 0)

D: d2 Second derivative - length 3 (returned, der > 1)

I: icode Return code

C.2 NearestOnEdge - Finds the Nearest Position to the Edge

icode ----gi_qNearestOnEdge(int vol, edge, double *coor, *t, *point)

ICODE -- IG_QNEARESTONEDGE(VOL, EDGE, COOR, T, POINT)

Returns the closest coordinates to the input point on the Edge and the t parameter.

I: vol

I: edge

D: coor

D: t

D: point

I: icode

Volume index

Edge index

Input point - length 3

t parameter (input & returned)

Point - length 3 (returned)

Return code

I

38

Note: SomeGeometryKernels(currentlyonly Parasolid) may require a hint so that

the desired point can be found. This parameter value can be put in t before the call and

should be a value close to desired point (if available). If t is not in the valid range then the

mid-point of the parameter range is used.

Therefore, it is always recommended that either a valid t is set before the function is called

(reguardless of the CAD system) or the value is set out-of-range. The resultant point should

be checked. If it is at the bounds of the Edge or far off the target, try another hint.

C.3 PointOnFace - Returns the Coordinates On the Specified Face

icode -- gi_qPointOnFace(int vol, face, double *uv, *point, int der,

double *du, *dv, *duu, *duv, *dvv)

ICODE = IG_QPOINTONFACE(VOL, FACE, UV, POINT, DER, DU, DV,

DUU, DUV, DVV)

Returns the Point and derivitives (optionally) at the (u, v) parameters.

I: vol

I: face

D: uv

D: point

I: der

D: du

D: dv

D: duu

D: duv

D: dvv

I: icode

Volume index

Face index

(u, v) parameters - length 2

Point - length 3 (returned)

Derivative Flag:

0 - No derivatives (only return point)

1 - Compute and return first derivative

2 - Compute and return first and second derivatives

First derivative of u - length 3 (returned, der > 0)

First derivative of v - length 3 (returned, der > 0)

Second derivative of u - length 3 (returned, der > 1)

Cross derivative - length 3 (returned, der > 1)

Second derivative of v - length 3 (returned, der > 1)

Return code

I

39

C.4 NearestOnFace - Finds the Nearest Position to the Face

!
icode = gi_qNearestOnFace(int vol, face, double *coor, *uv, *point) |

iICODE -- IG_QNEARESTONFACE(VOL, FACE, COOR, UV, POINT)

Returns the closest coordinates to the input point on the Face and the (u, v) parameters.

I: vol

I: face

D: coor

D: uv

D: point

I: icode

Volume index

Face index

Input point - length 3

(u, v) parameters - length 2 (input & returned)

Point - length 3 (returned)

Return code

Note: Some Geometry Kernels (currently only Parasolid) may require a hint so that

the desired point can be found. These parameter values can be put in [u,v] before the call

and should result in a point close (if available). If [u,v] is not in the valid range then the

mid-point of the parameter ranges is used.

Therefore, it is always recommended that either a valid [u,v] is set before the function is

called (reguardless of the CAD system) or a value is set out-of-range. The resultant point

should be checked. If it is at the bounds of the Face or far off the target, try another hint.

C.5 NormalToFace - Finds the Normal at the Specified Parameters

icode = gi_qNormalToFace(int vol, face, double *uv, *point, *norm)

ICODE = IG_QNORMALTOFACE(VOL, FACE, UV, POINT, NORM)

Returns the normal to the Face at the (u, v) parameters.

I: vol

I: face

D: uv

D: point

D: norm

I: icode

Volume index

Face index

(u, v) parameters - length 2

Point - length 3 (returned)

Normal - length 3 (returned)

Return code

I

4O

C.6 InEdge - Is the Point Contained in the Edge

icode = gi_qInEdge(int vol, edge, double *point)

ICODE = IG_QINEDGE(VOL, EDGE, POINT)

Returns a condition indicating whether the point is on the Edge.

I: vol

I: edge

D: point

I: icode

Volume index

Edge index

Point - length 3

Return code - CAPRI_OUTSIDE is returned when the

point is not contained on the Edge

C.7 InFace - Is the Point Contained on the Face

icode = gi_qInFace(int vol, face, double *point)

ICODE = IG_QINFACE(VOL, FACE, POINT)

Returns a condition indicating whether the point is on the Face.

I: vol

I: face

D: point

I: icode

Volume index

Face index

Point - length 3

Return code - CAPRI_OUTSIDE is returned when the

point is not contained on the Face

C.8 InBoundary - Is the Point Contained on the Boundary

icode -- gi_qInBoundary(int vol, bound, double *point, int *face)

ICODE = IG_QINBOUNDARY(VOL, BOUND, POINT, FACE)

Returns a condition indicating whether the point is on the Boundary.

I: vol

I: face

D: point

I: face

I: icode

Volume index

Bound index

Point - length 3

Face index for Face containing the point (returned)

Return code - CAPRI_OUTSIDE is returned when the

point is not contained on the Boundary

41

C.9 InVolume - Is the Point Contained within the Volume

icode = gi_qInVolume(int vol, double *point)

ICODE = IG_QINVOLUME(VOL, POINT)

Returns a condition indicating whether the point is in the Volume.

I: vol

D: point

I: icode

Volume index

Point - length 3

Return code - CAPRI_OUTSIDE is returned when the

point is not contained within the Volume

42

D Calculated or Geometrically Derived Queries

D.1 LengthOfEdge - Returns the arc-length of the Edge

icode = gi_cLengthOfEdge(int vol, edge, double tl, t2, *len)

ICODE = IG_CLENGTHOFEDGE(VOL, EDGE, T1, T2, LEN)

Returns the length along the Edge between the parameter range tl and t2.

I: vol

I: edge

D: tl

D: t2

D: len

I: icode

Volume index

Edge index

t parameter for the start of the calculation

t parameter for the end of the calculation - tl must be less

than t2.

the resultant length (returned)

Return code

D.2 CurvOfEdge - Gets the tangent and curvature for an Edge point

icode = gi_cCurvOfEdge(int vol, edge, double t, *tang, *curv)

ICODE : IG_CCURVOFEDGE(VOL, EDGE, T, TANG, CURV)

Returns the curvature and unit tangent found at t along the Edge.

I: vol

I: edge

D: t

D: tang

D: curv

I: icode

Volume index

Edge index

t parameter along the Edge

the unit tangent - length 3 (returned)

the curvature (returned)

Return code

43

D.3 MaxCurvOfEdge - Gets the maximum curvature for the attached

Faces

icode = gi_cMaxCurvOfEdge(int vol, edge, double t, *curv)

ICODE = IG_CMAXCURVOFEDGE(VOL, EDGE, T, CURV)

Returns the maximum curvature found at t along the Edge for the Faces that share the

Edge.

I: vol

I: edge

D: t

D: curv

I: icode

Volume index

Edge index

t parameter along the Edge

the maximum curvature (returned)

Return code

D.4 CurvOfFace - Gets the principal directions and curvature at a Face

point

1
icode = gi_cCurvOfFace(int vol, face, double *uv, *dirl, *curl, *dir2, *cur2) I

IICODE = IG_CCURVOFFACE(VOL, FACE, UV, DIR1, CUR1, DIR2, CUR2)

Returns the curvature and principle directions at (u, v) in the Face.

I: vol

I: face

D: uv

D: dirl

D: curl

D: dir2

D: cur2

I: icode

Volume index

Face index

(u, v) parameters for the Face - length 2

the first principal direction - length 3 (returned)

the curvature for first principal direction (returned)

the second principal direction - length 3 (returned)

the curvature for second principal direction (returned)

Return code

44

D.5 MaxCurvOfFace - Returns the maximum curvature of a Face point

icode = gi_cMaxCurvOfFace(int vol, face, double *uv, *curv)

ICODE = IG_CMAXCURVOFFACE(VOL, FACE, UV, CURV)

Returns the maximum curvature found at (u, v) in the Face.

I: vol

I: face

D: uv

D: curv

I: icode

Volume index

Face index

(u, v) parameters for the Face - length 2

the maximum curvature (returned)

Return code

I

D.6 OrderLoops - Returns a Faces loop order and orientation

icode = gi_cOrderLoops(int vol, face, *nsface, *nloop, **loop)

ICODE = IG_CORDERLOOPS(VOL, FACE, NSFACE, NLOOP, LOOP)

Returns the maximum curvature found at (u, v) in the Face.

I: vol

I: face

I: nsface

I: nloop

I: loop

Volume index

Face index

Number of subfaces - outer loops (returned)

NOTE: Some CAD systems may allow a single Face defi-

nition to be used for more than one surface. For example:

a plane completely bisected by another primitive - this

creates 2 planar surfaces with the same parameterization.

Number of loops (returned)

pointer to loop order information - nloop in total length

(returned & freeable)

The data is ordered in the same manner as the loops re-

turned from gi_dGetFace. The items returned contain ab-

solute values from 1 to nsface. This identifys to which

subface the loop belongs. Any subface has only 1 outer

loop (positive) and any number of holes (negative).

NOTE: If nloop is 1 then NULL is returned.

I: icode Return code

45

FORTRANnote: The pointer is not returned. NLOOP mustbe set with the sizeof

LOOP at the call. It is returnedwith the actual lengthused. If LOOP is not declared
largeenough(by the callingroutine) the return codeCAPRI_OVERFLOWis setbut all
thedataup to that lengthis correct.

46

E Boundary data routines

E.1 SetDiscret - Declares the Discretization for the Boundary

icode -- gi_bSetDiscret(int vol, bound, ndnode, ntris, nquads, nqmeshs,

flag, *nbnode)

ICODE -- IG_BSETDISCRET(VOL, BOUND, NDNODE, NTRIS, NQUADS,

NQMESHS, FLAG, NBNODE)

This routine sets the grid discretization for the Boundary. This may be comprised of a

homogenous or heterogenous collection of disjoint triangles, disjoint quadrangles and quad-

meshes. This call implicitly defines a boundary node (bnode) numbering, where NDNODE

is the number of nodes associated with the disjoint primitives, the rest of the bnodes are

defined from the quad-meshes (attached to structured blocks). This routine will cause the

execution of as many as 5 supplied routines, based on the arguments. These call-backs

define the collection of data for the bnodes, triangles, quadrangles, quad-meshes and node

coordinates.

I: vol

I: bound

I: ndnode

I: ntris

I: nquads

I: nqmeshs

I: flag

I: nbnode

I: icode

Volume index

Boundary index

Number of nodes associtated with the disjoint primitives

Number of disjoint triangles assigned to the Boundary

Number of disjoint quadrangles assigned to the Boundary

Number of quad-meshes (from structured blocks)

Update flag (if the Discretization changes):

0 - Remove all Attachments and Special groupings

1 - Remove all Special groupings, interpolate to new

.. bnodes for Attachments

Total number of bnodes for the Boundary (returned)

Return code

NOTE: If ntris, nquads and nqmeshs are all zero, then the descritization is removed.

47

gibFillCoord(int vol, bound, nbnode, double *xyz)

IGBFILLCOORD(VOL, BOUND, NBNODE, XYZ)

This routine must be supplied for any call to gi_bSetDiscret. Its responsibility is to fill the

coordinate data associated with the bnodes.

I: vol

I: bound

I: nbnode

D: xyz

Volume index

Boundary index

Number of Boundary nodes

The 3-space coordinates for each bnode. Length is 3*nbn-

ode (filled)

gibFillTris(int vol, bound, ntris, *tris, *ctris)

IGBFILLTRIS(VOL, BOUND, NTRIS, TRIS, CTRIS)

This routine must be supplied if the call to gi_bSetDiscret specifies any disjount triangles

(ntris _ 0). gibFillTris' responsibility is to fill the data required for disjoint triangles.

I: vol

I: bound

I: ntris

I: tris

I: ctris

Volume index

Boundary index

Number of disjoint triangles assigned to the Boundary

3 bnode numbers are required for the definition of each

triangle. The bnode numbers may come from either the set

of disjoint nodes and/or the nodes defined via the quad-

meshes. Length is 3*ntris (filled)

The mesh 3D cell number containing the trianglar face.

Note: This is not used internally by CAPRI. Length is

ntris (filled)

gibFillQuads(int vol, bound, nquads, *quads, *cquads)

IGBFILLQUADS(VOL, BOUND, NQUADS, QUADS, CQUADS)

This routine must be supplied if the call to gi_bSetDiscret specifies any disjount quads

(nquads _ 0). gibFillQuads' responsibility is to fill the data required for disjoint quadran-

gles.

I: vol Volume index

I: bound Boundary index

48

I: nquads

I: quads

I: cquads

Numberof disjoint quadrangles assigned to the Boundary

4 bnode numbers are required for the definition of each

quad. The bnode numbers may come from either the set

of disjoint nodes and/or the nodes defined via the quad-

meshes. Length is 4*nquads (filled)

The mesh 3D cell number containing the quad face. Note:

This is not used internally by CAPRI. Length is nquads

(filled)

gibFillQMesh(int vol, bound, nqmeshs, *block, *bsizes, *lims)

IGBFILLQMESH(VOL, BOUND, NQMESHS, BLOCK, BSIZES, LIMS)

This routine must be supplied if the call to gi_bSetDiscret specifies any quad-meshes (i.e.,

nqmeshs _ 0). gibFillQMesh's responsibility is to fill the data required for faces of struc-

tured blocks mapped to the Boundary.

I: vol

I: bound

I: nqmeshs

I: block

I: bsizes

I: lims

Volume index

Boundary index

Number of quad-meshes touching the Boundary

Block number (in the complete grid) with the associated

mapping. Length is nqmeshs (filled)

The sizes (N_, N j, NK) for the block. Length is 3*nqmeshs

(filled)

6 entries that define the extent of the exposed block. The

first 2 entries are the min and max indices for the first

index (usually I). The next 2 entries are the min and

max for the second index (J). The last 2 entries are the

rain and max indices for the last index (usually K). One

of the set must be the same and numbering is 1 biased.

For example: 1,1, 1,23, 10,100 - specifies the first I plane,

with J going from the first index up to (and including) 23

and K starting at 10 and continuing up to 100 specifying

1980 quads. Length is 6*nqmeshs (filled)

49

gibFillDNodes(int vol, bound, ndnode, *nodes)

IGBFILLDNODES(VOL, BOUND, NDNODE, NODES)

This routine must be supplied if the call to gi_bSetDiscret specifies any disjoint nodes

(ndnode _ 0) and CAPRI is to be used to translate bnode numbers back to 3D mesh

indices (calls to gi_bGet3DNode are used).

I: vol

I: bound

I: ndnode

I: nodes

Volume index

Boundary index

Number of nodes used in the disjoint tris and quads.

3D node number (in the complete grid). Length is ndnode

(filled)

E.2 GetDiscret - Returns data about the Discretization for the Boundary

icode = gi_bGetDiscret(int vol, bound, *nbnode, *ndnode, *ntris, *nquads,

*nqmeshs, *nattach, *nspecial)

ICODE -- IG_BGETDISCRET(VOL, BOUND, NBNODE, NDNODE, NTRIS,

NQUADS, NQMESHS, NATTACH, NSPECIAL)

This routine gets the sizes of grid discretization and the lengths for any associated data for

the Boundary.

I: vol

I: bound

I: nbnode

I:ndnode

I: ntris

I: nquads

I: nqmeshs

I: nattach

I: nspecial

I: icode

Volume index

Boundary index

Number of bnodes found in the Boundary (returned)

A zero indicates no discretization

Number of disjoint bnodes found in the Boundary (re-

turned)

Number of disjoint triangles (returned)

Number of disjoint quadrangles (returned)

Number of quad-meshes (returned)

Number of associated attachments (returned)

Number of associated special groups (returned)

Return code

5O

E.3 GetCoord - Returns the Boundary Discretization Coordinates

icode -- gi_bGetCoord(int vol, bound, *nbnode, double **xyz)

ICODE =- IG_BGETCOORD(VOL, BOUND, NBNODE, XYZ)

This routine returns the coordinates associated with all of the bnodes.

I: vol

I: bound

I: nbnode

D: xyz

I: icode

Volume index

Boundary index

Number of Boundary nodes (returned)

pointer to the 3-space coordinates for each bnode. Length

of data is 3*nbnode (returned)

Return code

FORTRAN note: The pointer is not returned. NBNODE must be set with the size of

XYZ (3 DOUBLE PRECISON words per bnode) at the call. It is returned with the actual

length used. If XYZ is not declared large enough (by the calling routine) the return code

CAPRI_OVERFLOW is set but all the data up to that length is correct.

E.4 GetTris - Returns the Disjoint Triangle Discretization

icode = gi_bGetTris(int vol, bound, *ntris, **tris, **ctris)

ICODE = IG_BGETTRIS(VOL, BOUND, NTRIS, TRIS, CTRIS)

This routine returns the list of disjoint tris defining the Boundary discretization.

I: vol

I: bound

I: ntris

I: tris

I: ctris

I: icode

Volume index

Boundary index

Number of disjoint triangles (returned)

pointer to 3 bnode numbers for the definition of each tri-

angle. Length of data is 3*ntris (returned)

pointer to the mesh 3D cell number containing the tri-

anglar face. Length of data is ntris (returned)

Return code

FORTRAN note: The pointers are not returned. NTRIS must be set with the size of

TRIS (3 INTEGERS per triangle) and CTRIS at the call. It is returned with the actual

length used. If the length is not large enough, then the return code CAPRI_OVERFLOW

is set but all the data up to the declared length is correct.

51

E.5 GetQuads - Returns the Disjoint Quadrangle Discretization

icode = gi_bGetQuads(int vol, bound, *nquads, **quads, **cquads)

ICODE -- IG_BGETQUADS(VOL, BOUND, NQUADS, QUADS, CQUADS)

This routine returns the list of disjoint quads defining the Boundary discretization.

I: vol

I: bound

I: nquads

I: quads

I: cquads

I: icode

Volume index

Boundary index

Number of disjoint quadrangles (returned)

pointer to 4 bnode numbers for the definition of each tri-

angle. Length of data is 4*nquads (returned)

pointer to the mesh 3D cell number containing the quad

face. Length of data is nquads (returned)

Return code

FORTRAN note: The pointers are not returned. NQUADS must be set with the size of

QUADS (4 INTEGERS per quad) and CQUADS at the call. It is returned with the actual

length used. If the length is not large enough, then the return code CAPRI_OVERFLOW

is set but all the data up to the declared length is correct.

E.6 GetQMesh - Returns the Qua&Mesh Discretization

icode -- gi_bGetQMesh(int vol, bound, *nqmeshs, **block, **bsizes, **lims)

ICODE -- IG_BGETQMESH(VOL, BOUND, NQMESHS, BLOCK, BSIZES,

LIMS)

This routine returns the list of quad-meshes used in the Boundary discretization.

I: vol

I: bound

I: nqmeshs

I: block

I: bsizes

I: lims

Volume index

Boundary index

Number of quad-meshs in the Boundary (returned)

pointer to the block number (in the complete grid). Length

of data is nqmeshs (returned)

pointer to the sizes (NI, Nj, NK) for the block. Length of

data is 3*nqmeshs (returned)

pointer to 6 entries that define the extent of the exposed

block. Length of data is 6*nqmeshs (returned)

52

I: icode Returncode

FORTRAN note: The pointers are not returned. NQMESHS must be set with the size

of BLOCK, BSIZES (3 INTEGERS per qmesh) and LIMS (6 INTEGERS per qmesh) at

the call. It is returned with the actual length used. If the length is not large enough, then

the return code CAPRI_OVERFLOW is set but all the data up to the declared length is

correct.

E.7 Get3DNode - Translates the Boundary node to 3D node number

icode -- gi_bGet3DNode(int vol, bound, bnode, *type, *location)

ICODE -- IG_BGET3DNODE(VOL, BOUND, BNODE, TYPE, LOCATION)

This routine returns the 3D mesh index associated with the bnode.

I: vol

I: bound

I: bnode

I: type

I: location

I: icode

Volume index

Boundary index

Boundary node index - starts at 1.

Node type (returned)

0 - from a node associated with disjoint primitives

1 - from a node associated with quad-meshes

Mesh location (returned)

Type 0: 3D Node number

Type 1: I, J, K and Block # - 4 integers

Return code

53

E.8 SetSpecial - Specify/Update a Special Grouping

icode = gi_bSetSpecial(int vol, bound, char *name, int size)

ICODE -- IG_BSETSPECIAL(VOL, BOUND, NAME, SIZE)

This routine specifies a Special listing (by name). These special groupings can be used to

indicate lists of bnodes that may have special boundary condtions applied (such as at the

Edge between two Boundaries). If the listing already exists, it is overwritten with the new

data. This routine will cause a call-back (documented next) to be executed.

I: vol

I: bound

C: name

I: size

I: icode

Volume index

Boundary index

Listing name (i.e., "hub edge", "wing-body edge")

The length of the list

Grouping index/Return code

gibFillSpecial(int vol, bound, char *name, int size, *list)

IGBFILLSPECIAL(VOL, BOUND, NAME, SIZE, LIST)

This call-back will be executed after a call to gi_bSetSpecial. The routines responsibility is

to fill the list requested for the grouping.

I: vol

I: bound

C: name

I: size

I: list

Volume index

Boundary index

Special grouping name

The number of entries for the list

Special list - length is size (filled)

E.9 GetSpecial - Return the info for a Special Grouping

icode -- gi_bGetSpecial(int vol, bound, char *name, int *size, **list)

ICODE -- IG_BGETSPECIAL(VOL, BOUND, NAME, SIZE, LIST)

This routine returns data about a Special grouping (by name).

I: vol

I: bound

C: name

I: size

Volume index

Boundary index

Special grouping name

The length of the list (returned)

54

I: list

I: icode

pointer to the list - data lengthis size(returned)

Return code

FORTRANnote:Thepointerisnot returned.SIZEmustbesetwith the lengthof LIST
at the call. It is returnedwith the actuallengthused. If the length is not largeenough,
thenthe returncodeCAPRI_OVERFLOWissetbut all thedataup to the declaredlength
is correct.

E.10 GetISpecial - Get a Special Grouping by Index

icode -- gi_bGetISpecial(int vol, bound, index, char **name, int *size, **list)

ICODE -- IG_BGETISPECIAL(VOL, BOUND, INDEX, NAME, SIZE, LIST)

This routine returns data about a Special grouping (by index).

I: vol

I: bound

I: index

C: name

I: size

I: list

I: icode

Volume index

Boundary index

Grouping index - bais 1.

Grouping name (returned)

The length of the grouping (returned)

pointer to the list - data length is size (returned)

Return code

FORTRAN note: The pointer is not returned. SIZE must be set with the length of LIST

at the call. It is returned with the actual length used. If the length is not large enough,

then the return code CAPRI_OVERFLOW is set but all the data up to the declared length

is correct.

E.11 DelSpecial - Remove a Special Grouping

icode -- gi_bDelSpecial(int vol, bound, char *name)

ICODE -- IG_.BDELSPECIAL(VOL, BOUND, NAME)

This routine deletes the data associated with a Special grouping. NOTE: the indices used

with the groupings will be affected.

I: vol Volume index

I: bound Boundary index

C: name Special listing name

I: icode Return code

55

F Geometry Based Interpolation Routines

F.1 SetAttach - Specify/Update a Boundary Attachment

icode = gi_iSetAttach(int vol, bound, char *name, int rank, char *update)

ICODE -- IG_ISETATTACH(VOL, BOUND, NAME, RANK, UPDATE)

This routine specifies a Boundary attachment (by name). If the attachment already exists,

it is overwritten with the new data. This routine will cause call-back (documented next) to

be executed.

I: vol

I: bound

C: name

I: rank

C: update

I: icode

Volume index

Boundary index

Attachment name (i.e., "pressure", "heat transfer")

The number of entries per bnode, i.e., scalars are 1, vec-

tors are 3 (or -3 - do not apply replication/displacement).

A character string to indicate something about the at-

tachment. For example, if the simulation is transient this

could contain the solvers time when last filled.

Attachment index/Return code

giiFillAttach(int vol, bound, char *name, int rank, char *update, int nbnode,

double *data)

IGIFILLATTACH(VOL, BOUND, NAME, RANK, UPDATE, NBNODE,

DATA)

This call-back will be executed after a call to gi_iSetAttach that specifies a non-zero rank.

The routines responsibility is to fill the data requested for the attachment.

I: vol

I: bound

C: name

I: rank

C: update

I: nbnode

D: data

Volume index

Boundary index

Attachment name

The number of entries per bnode

A character string to indicate something about the attach-

ment.

Number of boundary nodes

Attached data - length is rank*nbnode (filled)

56

F.2 GetAttach - Get a Boundary Attachment

icode -- gi_iGetAttach(int vol, bound, char *name, |nt *rank, char **update,

int *nbnode, double **data)

ICODE = IG_IGETATTACH(VOL, BOUND, NAME, RANK, UPDATE,

NBNODE, DATA)

This routine returns data about a Boundary attachment (by name).

I: vol

I: bound

C: name

I: rank

C: update

I: nbnode

D: data

I: icode

Volume index

Boundary index

Attachment name

The number of entries per bnode (returned)

pointer to the update character string (returned)

Number of boundary nodes (returned)

pointer to attached data - data length is rank*nbnode

(returned)

Return code

FORTRAN note: The pointer is not returned. NBNODE must be set with the size of

DATA at the call. It is returned with the actual length used. If the length is not large

enough, then the return code CAPRI_OVERFLOW is set but all the data up to the declared

length is correct.

F.3 GetIAttach - Get a Boundary Attachment by Index

icode -- gi_iGetIAttach(int vol, bound, index, char **name, int *rank,

char **update, int *nbnode, double **data)

ICODE = IG_IGETIATTACH(VOL, BOUND, INDEX, NAME, RANK,

UPDATE, NBNODE, DATA)

This routine returns data about a Boundary attachment (by index).

I: vol

I: bound

I: index

C: name

I: rank

Volume index

Boundary index

Attachment index - bais 1.

Attachment name (returned)

The number of entries per bnode (returned)

57

C: update

I: nbnode

D: data

I: icode

pointerto the updatecharacterstring (returned)

Numberof boundary nodes (returned)

pointer to attached data - data length is rank*nbnode

(returned)

Return code

FORTRAN note: The pointer is not returned. NBNODE must be set with the size of

DATA at the call. It is returned with the actual length used. If the length is not large

enough, then the return code CAPRI_OVERFLOW is set but all the data up to the declared

length is correct.

F.4 DelAttach - Remove a Boundary Attachment

icode = giJDelAttach(int vol, bound, char *name)

ICODE = IG_IDELATTACH(VOL, BOUND, NAME)

This routine deletes the data associated with a Boundary attachment. NOTE: the indices

used with the attachments will be affected.

I: vol Volume index

I: bound Boundary index

C: name Attachment name

I: icode Return code

F.5 GetDisplace - Gets the Volume's displacement matrix

icode = giAGetDisplace(int vol, double *dmatrix)

ICODE = IG_IGETDISPLACE(VOL, DMATRIX)

This routine returns the displacement matrix associated with the specified volume. The

displacement matrix is a column-major matrix that is 4 columns by 3 rows and declared

in C as [3][4] and in FORTRAN as (4,3). This matrix is used to multiply all Volume

coordinates before interpolation is performed and therfore supports any combination of

translation, rotation and scaling.

I: vol

D: dmatrix

I: icode

Volume index

The displacement matrix

Return code

58

F.6 SetDisplace - Set the Volume's displacement matrix

icode = gi_iSetDisplace(int vol, double *dmatrix)

ICODE -- IG-ISETDISPLACE(VOL, DMATRIX)

This routine specifies the displacement matrix associated with the specified volume. The

displacement matrix is a column-major matrix that is 4 columns by 3 rows and declared in

C as [3][4] and in FORTRAN as (4,3).

I: vol

D: dmatrix

I: icode

Volume index

The displacement matrix

Return code

F.7 GetReplicate - Gets the Volume's replication data

icode -- gi_iGetReplicate(int vol, *nrep, double *rmatrix)

ICODE -- IG_IGETREPLICATE(VOL, NREP, RMATRIX)

This routine returns the replication data associated with the specified volume. This in-

formation is comprised of a matrix and the number of times to apply this matrix to the

Volume. The replication matrix is a column-major matrix that is 4 columns by 3 rows

and declared in C as [3][4] and in FORTRAN as (4,3). This matrix is used to multiply

all Volume coordinates in order to produce additional instances of the Voulme (before the

Displacement matrix is applied) and then the interpolation is performed. When properly

used this allows mirroring and periodic volumes (like found in turbomachinery).

I: vol

I: nrep

D: rmatrix

I: icode

Volume index

Number of times to apply the matrix

The replication matrix

Return code

59

F.8 SetReplicate - Set the Volume's replication data

icode = gi_iSetReplicate(int vol, nrep, double *dmatrix)

ICODE -- IG__ISETREPLICATE(VOL, NREP, RMATRIX)

This routine specifies the replication data associated with the specified volume. The repli-

cation matrix is a column-major matrix that is 4 columns by 3 rows and declared in C as

[3][4] and in FORTRAN as (4,3). nrep set to zero turns off all replication.

I: vol

I: nrep

D: rmatrix

I: icode

Volume index

Number of times to apply the matrix

The replication matrix

Return code

F.9 NewHandle - Create new Interpolation Handle

icode = gi_iNewHandle(int vols, bounds, void, boundd, *handle)

ICODE = IGINEWHANDLE(VOLS, BOUNDS, VOLD, BOUNDD,

HANDLE)

This routine creates a new interploation Handle and fills the associated internal data. If a

Handle aready exists (that maps the source Boundary to the destination Boundary), that

existing Handle is returned.

I: vols

I: bounds

I: vold

I: boundd

I: handle

I: icode

Source Volume index

Source Boundary index

Destination Volume index

Destination Boundary index

Handle index (returned)

Return code

60

F.10 GetHandle - Gets the Interpolation Handle data

icode = giJGetHandle(int handle, *vols, *bounds, *void, *boundd, *nbnoded,

**intpf, double **dist)

ICODE = IG_IGETHANDLE(HANDLE, VOLS, BOUNDS, VOLD, BOUNDD,

NBNODED, INTPF, DIST)

This routine creates a new interploation Handle and fills the associated internal data. If

a Handle aready exists that maps the source Boundary to the destination Boundary, that

existing Handle is returned.

I: handle

I: vols

I: bounds

I: vold

I: boundd

I: nbnoded

I: intpf

D: dist

I: icode

Handle index

Source Volume index (returned)

Source Boundary index (returned)

Destination Volume index (returned)

Destination Boundary index (returned)

Number of destination Boundary Nodes (returned)

pointer to interpolation flags (1 - extrapolated, 0 - inter-

polated, -1 - not vaild) - length is nbnoded (returned)

pointer to distance from surface - length is nbnoded (re-

turned)

Return code

FORTRAN note: The pointer is not returned. NBNODED must be set with the size of

INTPF and DIST at the call. It is returned with the actual length used. If the length is

not large enough, then the return code CAPRI_OVERFLOW is set but all the data up to

the declared length is correct.

F.11 DelHandle - Remove an Interpolation Handle

icode = gi_iDelHandle(handle)

ICODE -- IG_IDELHANDLE(HANDLE)

This routine deletes an interploation Handle.

I: handle Handle index

I: icode Return code

61

F.12 InterAttach - Interpolate to Produce/Update Boundary Attach-

ment

icode = gi_iInterAttach(int handle, char *name, *named, *updated)

ICODE = IG..IINTERATTACH(HANDLE, NAME, NAMED, UPDATED)

This routine interpolates the source attachment onto the discretization for the destination

boundary as defined for the Handle. A new attachment is created if NAMED does not

already exist, otherwise the data is replaced. Any rank 3 Attachments have the displacement

and replication matrices applied (just like the coordinates).

I: handle

C: name

C: named

C: updated

I: icode

Handle index

Attachment name - source

Attachment name - destination

The update character string - destination

Return code

62

G Tag Routines

G.1 GetNumVolume - Returns the number of Volume Tags

icode -- gi_tGetNumVolume(int vol, *num)

ICODE -- IG_TGETNUMVOLUME(VOL, NUM)

This routine returns the number of Tags for the Volume.

I: vol

I: num

I: icode

Volume index

Number of Tags associated with this Volume

Return code

G.2 GetVolume - Gets the Volume Tag

icode -- gi_tGetVolume(int vol, char *tag, **val)

ICODE = IG_TGETVOLUME(VOL, TAG, VAL)

This routine returns the string associated with the Volume Tag.

I: vol Volume index

C: tag The Tag string

C: val The associated string

I: icode Return code

G.3 GetIVolume - Gets the Volume Tag by index

icode -- gi_tGetIVolume(int vol, index, char **tag, **val)

ICODE ---- IG_TGETIVOLUME(VOL, INDEX, TAG, VAL)

This routine returns the string associated with the index for the Volume Tag.

I: vol

I: index

C: tag

C: val

I: icode

Volume index

Tag index - range 1 to the number of Tags.

The Tag string

The associated string

Return code

63

G.4 SetVolume - Sets the Volume Tag

icode -- gi_tSetVolume(int vol, char *tag, *val)

ICODE -- IG_TSETVOLUME(VOL, TAG, VAL)

This routine sets the string associated with the Volume Tag.

string is applied.

If the Tag exists the new

I: vol

C: tag

C: val

I: icode

Volume index

The Tag string

The associated string - A NULL value deletes the Tag.

Return code

G.5 GetNumBoundary - Returns the number of Boundary Tags

icode = gi_tGetNumBoundary(int vol, bound, *num)

ICODE = IG_TGETNUMBOUNDARY(VOL, BOUND, NUM)

This routine returns the number of Tags for the Boundary.

I: vol

I: bound

I: num

I: icode

Volume index

Boundary index

Number of Tags associated with this Boundary

Return code

G.6 GetBoundary - Returns the Boundary Tag

icode -- gi_tGetBoundary(int vol, bound, char *tag, **val)

ICODE = IG_TGETBOUNDARY(VOL, BOUND, TAG, VAL)

This routine returns the string associated with the Boundary Tag.

I: vol Volume index

I: bound Boundary index

C: tag The Tag string

C: val The associated string

I: icode Return code

64

G.7 GetIBoundary - Gets the Boundary Tag by index

icode = gi_tGetIBoundary(int vol, bound, index, char **tag, **val)

ICODE = IG_TGETIBOUNDARY(VOL, BOUND, INDEX, TAG, VAL)

This routine returns the string associated with the index for the Boundary Tag.

I: vol

I: bound

I: index

C: tag

C: val

I: icode

Volume index

Boundary index

Tag index - range 1 to the number of Tags.

The Tag string

The associated string

Return code

G.8 SetBoundary - Sets the Boundary Tag

icode = gi_tSetBoundary(int vol, bound, char *tag, *val)

ICODE --- IG_TSETBOUNDARY(VOL, BOUND, TAG, VAL)

This routine sets the string associated with the Boundary Tag. If the Tag exists the new

string is applied.

I: vol

I: bound

C: tag

C: val

I: icode

Volume index

Boundary index

The Tag string

The associated string - A NULL value deletes the Tag.

Return code

65

H Return Codes

-13 - CAPRI_BADHANDLE

-12 - CAPRI_NOTFOUND

-11 - CAPRI_NODISCRET

-10 - CAPRI_OVERFLOW

-9 - CAPRI_INUSE

-8 - CAPRI_RANGERR

-7 - CAPRI_MODELERR

-6 - CAPRI__NOLOAD

-5 - CAPRI_INDEX

-4 - CAPRI_UNSUPPORT

-3 - CAPRI__MALLOC

-2 - CAPRI.ALREADYON

-1 - CAPRI._NOINIT

0 - CAPRI_SUCCESS

1 - CAPRI_OUTSIDE - Not an error

66

Computational Analysis PRogramming

Interface

Robert Haimes

Massachusetts Institute of Technology
haimesOor ville.mit .edu

and

Gregory J. Follen

NASA Lewis Research Center

Gregory. J.Follen @lerc.nasa.gov

Abstract

CAPRI is a CAD-vendor neutral application programming interface designed for
the construction of analysis suites and design systems. By allowing access to the

geometry from within all modules (grid generators, solvers and post-processors)
such tasks as meshing on the actual surfaces, node enrichment by solvers and

defining which mesh faces are boundaries (for the solver and visualization system)

become simpler. The overall reliance on file 'standards' is minimized.

This 'Geometry Centric' approach makes multi-disciplinary analysis codes

much easier to build. By using the shared (coupled) surface as the foundation,

CAPRI provides a single call to interpolate grid-node based data from the sur-

face discretization in one volume to another. Finally, design systems are possible

where the results can be brought back into the CAD system (and therefore manu-

factured) because all geometry construction and modification are performed using

the CAD system's geometry kernel.

1 Introduction

NASA Lewis Research Center's Numerical Propulsion System Simulation

(NPSS) [1] is a program focused on reducing the time and cost in developing

aero-propulsion engines. This is done by addressing the multi-disciplinary

nature of this problem early in the design process and by applying new

computer hardware and software techniques as part of this process. NPSS

has a vision: To establish an interdisciplinary "Numerical Test Cell" for

propulsion systems which improves quality, and reduces development time

and cost.

NPSS accomplishes this vision by beginning from an engine system view

that integrates multiple disciplines such as aerodynamics, structures and

heat transfer with computing and communication technologies to capture

complex physical processes in a timely and cost effective manner. In or-
der to conduct complex multi-discipline simulations overnight, solving the

problem of providing common geometry representations or common access

across all pieces of the simulation or design space is required. There are
other obstacles that need to be overcome to fully implement an NPSS En-

vironment but a common geometric model has such a great potential to

save time in design, improve accuracy and consistency from concept of the

engine through manufacturing that it deserves special attention. NPSS has
conservatively estimated that a common geometry model could save 33% in

development time in building new engines to the Aeropropulsion Industry.

As in the past, NPSS has built it's environment through a series of ever

increasingly complex prototypes. Therefore, before attempting to tackle

the multi-disciplinary problem, it is important to look at a single discipline

in detail to attempt to understand the problems in automation first. The

computational steps traditionally taken for Computational Fluid Dynamics

(CFD), Structural Analysis, and other simulation disciplines (or when these

are used in design) are:
• Surface Generation

The surfaces of the object(s) are generated usually from a CAD system.

This creates the starting point for the analysis and is what is used for

manufacturing.
• Grid Generation

These surfaces are used (with possibly a bounded outer domain) to create

the volume of interest. Usually for the analysis of external aerodynamics,

the aircraft is surrounded by a domain that extends many body lengths

away from the surfaces.
• Flow Solver or Simulation

The solver takes as input the grid generated by the second step (and in-
formation about how to apply conditions at the bounds of the domain).

For fluids, the solver usually simulates either the Euler or Navier-Stokes

equations in an iterative manner, storing the results either at the nodes in
the mesh or in the element centers. The output of the solver is a file that
contains the solution.

• Post-processing Visualization
After the solution procedure has successfully completed, the output from

the grid generator and the simulation are displayed and examined in a

graphical manner.

CAD - Gridding - Solving - Visualize I

Figure 1: The Traditional Computational Analysis Suite

These steps have worked well in the past for simple steady-state simu-

lations at the expense of much user interaction. The data was transmitted

betweenphasesvia files(thearrowsin Figure1). In mostcases, the out-

put from a CAD system could go to IGES files. The output from Grid

Generators and solvers do not really have standards though there are a

couple of file formats that can be used for a subset of the problem space

(i.e. PLOT3D data formats for CFD). The user would have to patch up

the data or translate from one format to another to move to the next step.

Sometimes this could take days.

The disciplines of Structural and Mechanical Analysis are now more

closely coupled than CFD. This is for two reasons; (1) the grid generation

is simpler (fewer gridding schemes are employed) and the resultant meshes

tend to be much smaller, and (2) the market-place is much larger. This

has resulted, for most commercial packages, in the analysis being run from

within the CAD system.

If one is considering CFD or a multi-disciplinary analysis that includes

CFD or another physical system (not supported through the CAD system)

then some other mode of execution is required. This, historically, has been

prone to problems in automation.

2 CAPRI

Instead of the serial approach to analysis as described above, CAPRI uses

a geometry centric approach. This makes the actual geometry (not just a

discretized version) accessible to all phases of the analysis. The connection

to the geometry is made through an Application Programming Interface

(API) and NOT a file system. In fact, CAPRI is defined from two com-

ponents; (1) A definition of the solid part (geometry and topology) and
(2) the API that allows access to the part and other data pertinent to the

analysis suite.

The CAPRI API isolates the top level applications (grid generators,

solvers and visualization components) from the geometry kernel. This al-

lows the replacement of one geometry kernel with another, without effecting

the top level applications. For example, if Pro/ENGINEER is used as the

CAD package then Pro/TOOLKIT can be used for all geometric queries so
that no solid geometry information is lost in a translation. See Figure 2.

This figure depicts a simple analysis suite. A much more complex system

can be put together by adding modules as would be required for multi-

disciplinary applications.

2.1 Geometry and Topology
To insure that the resulting interface is not overly complex, it is crucial

that the geometry description be uncomplicated (but not too simple as to

impair functionality). Most systems that deal with CAD data make the

distinction between geometry (points, curves and surfaces) and topology

(the hierarchical connections between geometric entities). CAPRI mixes

these in a simple data definition. The geometry and topology are defined

in CAPRI in the following manner:

CAD[Gridding --

I

Solving

API

DataBase]

Figure 2: The CAPRI based Computational Analysis Suite

• Nodes

These are the simplest entities and are just points in 3 space.
• Edges

Edges are curves. Each Edge is bounded by two unique Nodes. The Edge

is parameterized with t, where the first Node has a value at train and the

second bounding Node has a value of tma,. The value of t,nin is always less
than tmax.

• Faces

Faces are parameterized (u, v) surfaces. The parameter range for u is umin
to um_x and v ranges from vmin to vm_x, but the relationship between (u, v)

and the bounding Edges is not as simple as the Edge-Node definitions. This

is because Faces may be bounded by more than 4 Edges.

The bounds of the Face are defined by closed set(s) of Edges. There
may be one or more of these loops for each Face. Stored with each defining

Edge is an orientation so that it is known whether to look at the Edge as

specified or in the opposite sense. The loop is an ordered suite that defines

the orientation of the Face. The outer loop(s), specify the boundary of

the surface, and traverse the Face in a right-handed manner - defining the

outward pointing normal (out of the volume). Any holes are specified by a

left-handed traversal of Edges. See Figure 3.
Each Edge can be found bounding two Faces, one in the forward and

one in the opposite sense.

Again, to aid in plotting and to have a complete representation of this

(possibly complex) Face, there is an attached discretization (tesselation).

This is defined as suite of disjoint triangles of a specified length. Each

triangle is right-handed with the normal pointing out of the volume.
• Boundaries

Boundaries are simply collections of one or more Faces. These entities are

the connection between the geometry and the rest of the analysis suite,

Face
l

Node

Figure 3: Simple Volume with cylinder cutout

as described above. The Faces need not couple together (i.e., a periodic

boundary upstream and downstream from a turbine or compressor blade)

but are used to insure that the grid generation knows that these surfaces

could be treated in special ways. And, the solver knows which boundary
condition to apply to what section of the resultant mesh.

Boundaries have an associated name (i.e., far-field, body, wing and etc).
• Volumes

Volumes are completely closed regions of 3 space. Volumes are bounded by

the sum of all of the Faces found in the Boundaries. These Faces match up

at the shared Edges, that terminate at the Nodes. CAPRI can handle one

or more Volumes at a time. Each Volume can be named with strings like;

'Fluids passage', 'Blade', and etc.

2.2 Volumes

All coordinates for a Volume reported back through CAPRI are in the CADs

native coordinate system, scale and units for that individual component

part.
• Replication

There is a Replication matrix and count associated with each Volume. The

count refers to the number of times to apply the matrix to produce the

complete representation of the object. This matrix is used to multiply all

Volume coordinates in order to produce additional instances. This is only
referenced within CAPRI for the interpolation functions.

Mirroring can be considered a simple form of this type of replication,

where the count is one and the matrix is all zero except for the diagonal.

The diagonal will contain 1.0 for 2 of the 3 components and -1.0 for the
other.

• Displacement

There is a Displacement matrix associated with each Volume. The matrix is

used to multiply all Volume coordinates in order to specify movement of the

Volume. This allows the support of any combination of translation, scaling

and rotation. This may be used for transient problems where Volumes move

by other Volumes. For the interpolation routines, Replication is applied

before Displacement.
• Volume Tags

Tags are character strings associated with the Volume. Each Tag has an

attached value string. These Tag entities are useful for specifying conditions
or material information for the entire Volume. For example; the Volume

may have a Tag 'gamma' with the associated value '1.4'.

2.3 Boundaries

Boundaries are the pivotal data objects used within CAPRI. Boundaries

are the entities that the grid generators should build the exposed parts

of the mesh about. Different solver functions (boundary conditions) are

then applied across these facets of the volume. When Multi-disciplinary

analysis are run, boundaries are where these different physical models share

information to drive the coupled solution.

The data that comes from CAD systems does not always provide a

proper separation of surfaces (Edges, as specified above) that coincide with
what is required by the analysis suite. This is for two reasons; (1) the

CAD operator, by the order of construction, may produce artifacts (such

as sliver surfaces) or detail at a level more complex than the analysis suite

requires. (2) Curved surfaces such as fillets have breaks, on where these

surfaces mate with other surfaces, usually not at the center of curvature

where the analysis suite would require the edge of the boundary.
The first of these problems is resolved in CAPRI by allowing the collec-

tion of CAD surfaces. The analysis suite can query this collection and get

to the detailed CAD surfaces if required. This has the advantage over what

is done in automated techniques used for grid generation in that the CAD

artifacts can be meshed through as opposed to becoming features in the

grid. For example, a sliver surface would end up completely resolved, in an
automated surface gridding procedure, requiring potentially large numbers

of small cells in those regions.

Scribing and splitting CAD surfaces so that the analysis boundaries

can be defined is a function of CAPRI. Initially this is done interactively or

through program control (if the analysis suite can determine where to break
the surfaces). In the future, work will be done to attempt to automate this

procedure.

• Boundary Discretization
Each Boundary can have an attached discretization. This discretization can

be from different mesh topologies that touch the Boundary. There are 3
types of cell faces that build this structure (supported via Boundary nodes

- bnodes): (1) Disjoint Triangles - 3 bnodes per entity, (2) Disjoint Quad-

rangles - 4 bnodes per entity and (3) Quad-Meshes - these are produced

from grid 'planes' of structured blocks.
• Special Groupings

Special groupings are simply lists of bnodes that may be required by the

solver's boundary condition routines. This is to flag "special" nodes. For

example, if IBlankin9 is used, there could be a list that contains the IBIanked

nodes.
• Boundary Attachments

Boundary attachments are collections of data that are associated with the

bnodes of the Boundary discretization. The attachments are identified by

a name and can have an additional string that can indicate information

on how and/or when the attachment was created. These attachments can
be used to communicate boundary level data between modules (i.e., heat

transfer to the visualization module), perform zooming or otherwise cou-

ple like simulations at boundaries and perform multi-disciplinary coupling
between Volumes.

• Boundary Tags
Tags are character strings associated with the Boundary. Each string has

an attached value string. These Tag entities are useful for specifying con-
ditions or material information for the application of boundary conditions

by the solver. For example; the Boundary named 'Wall' may have a Tag

'temperature' with the associated value '300K'.

2.4 Interpolation Handles
An integer hook is used in CAPRI to simplify the specification of Bound-

ary to Boundary interpolation required by single and multi-disciplinary

coupling. This Handle is an index to internal storage that contains infor-
mation such as the indices and weights used in the source bnode space to
create Attachments to the destination Boundary discretization.

When a new Handle is created the current state of the Displacement

and Replication data for the destination Volume is used as well as the Dis-

placement matrix for the source when calculating the interpolation. There-

fore, for transient simulations, the Handles associated with Volumes moving

(with respect to the coupled volume) must be deleted and recreated every
iteration.

2.5 The CAPRI API

The CAPRI API is sub-divided into the following components:

1. Utility routines.

2. Geometry data-base queries.

3. Point queries.

4. Calculated or geometrically derived queries.

5. Boundary data routines.

6. Geometry based interpolation routines.

7. Tag based routines.
8. Geometric modification.

3 The CAPRI Top-level Modules

CAPRI does not specifyeitherthe use or controlof the suite.The design

system or analysissoftware can be differentprograms controlledat some

higherlevel(such as command linelanguage scriptsor another code). The

softwarecould alsobe builtas a singleintegratedapplication.For example,

an automated optimizer could be used to drive the entiresuite,and in

this case,itwould obviously be in control. Software controlcould also

be specifiedby some visuallybased GUI that allowsplugging the modules

togetheras envisionedby NPSS.

For thisto work, and forgeneralplug and play,thereneeds to be agree-

ment on how input parameters get passed through the system(s).Within

CAPRI, the Tag and Attachment concepts areused forspecifyingthisdata.

Tags place simple (or integrated quantities) associated with the Volume or

Boundary of interest into CAPRI so that other modules have direct access.

Complex specification of input can be achieved by mapping quantities to
Boundaries via Attachments.

It is the responsibility of the controlling software to fill the required

Tags and/or Attachments for the target module (or cause them to be filled
by executing some other module in the system) before initiating execution.

3.1 Grid Generator

The Grid Generator task is the most straight forward. It uses CAPRI to

query the geometry and topology of the part of interest and then performs

the meshing. Once complete, it specifies the Boundary discretization for
the Volume so that the other modules can communicate their data on the

Boundary.

A CAPRI interface was added to the grid generation code (APG) used

in average passage turbomachinery flow analysis. This is a difficult test

because this analysis requires that spanwise grid surfaces lie on surfaces of

revolution, leading to many surface-surface intersections. Previously, the

APG code was limited to using a single parameratized surface to define
the blade, which is often not easily obtained from a CAD model. CAPRI

provides an alternative approach, using two basic features. First, CAPRI

provides a discretized version of the surfaces in the form of a tessellation.

Second, CAPRI allows snapping points on to a surface from a given location.
A new routine was written for APG which calculates the intersection of

a surface of revolution with the blade tessellation. Points calculated on

this intersection are then brought to the surface using the closest point
calculation.

Figure 4 shows a generic compressor grid produced from a Parasolid

(UniGraphics) model using APG and CAPRI.

3.2 Solver

The simulation software gets the input data from CAPRI via Tags and

Attachments, but will need to read the cloud of data (both mesh point

4 A Coupling Example- Zooming
The task of coupling a 2D axisymmetric fluids code to a full 3D CFD

simulation for turbomachinery would, in the past, require special program-

ming. This would produce a one-offapplication and the coding would have

to be done again with a different component (if different modules were

required). CAPRI simplifies this problem by providing the interpolation

infrastructure. A proper representation of both Volumes is required (with

the shared Boundary) because CAPRI, and allgeometric representations

within CAPRI, isassumed to be 3D.

The firststep for thisexample would be to definethe Replicationin-

formation for each Volume. This allows the use of a singlepassage to

representthe entirewheel and informs the CAPRI interpolationroutines

how to perform the mating when the interfacesdo not match exactly.

Ifthe informationisto be passed from the 2D axisymmetric simulation

to the 3D, then the axisymmetric code needs to produce its3D discretiza-

tionon to the Boundary. This issimply done by revolvingthe data about

the arch producing a radialstructuredmesh. The data on the mesh points

(in the circumferencialdirection)isduplicated- axisynnnetricly.The 3D

code can then get data on the Boundary by a singlecallthat provides

an interpolatedAttachment. Scalar,vectoror state-vectorquantitiesare

supported.

Ifthe informationisto be passed from the 3D solutiontothe axisymmet-

ricsimulation,the 2D code gets the Attachment desiredby interpolation

on to the constructed Boundary. Averaging then needs to be applied so

that the coupled valuescan be used within the axisymmetric context.

5 Conclusion

CAPRI offersa solutionto this real world dilemma which iscomprised

ofmulti-vendor,differingneed companies that requireaccessto geometry

which preservesallthe inherent featuresofthat part while allowing each

disciplinethe abilityto registeritseffect.

Acknowledgments
This work was partiallysponsored by NASA Lewis Research Center under

grant NAG3-2019. Additionalsupport for thisresearchwas obtained from

the IBM SUR Project and the IBM UUP Project.

References

[I]A. L.Evans,J.Lytle,G. Follenand I.Lopez.An IntegratedComputing and

InterdisciplinarySystems Approach to AeropropulsionSimulation.AMSE

IGTI, Orlando,FL, 1997.
[2]R. Haimes and M. Giles.Visual3:InteractiveUnsteady Unstructured3D

Visualization.AIAA Paper 91-0794,1991.
[3]R. Haimes and D. Edwards. Visualizationina ParallelProcessingEnviron-

ment. AIAA Paper 97-0348,1997.

